
Supplementary for Scene-LLM

This document serves as the supplementary material for Scene-LLM: Extending Language Models for 3D Visual Un-
derstanding and Reasoning. Due to space constraints in the main paper, this supplementary section provides additional
experimental results. It detailed benchmark results for scene caption generation, and further ablation studies that explore
various modalities, the impact of using frame data, and how camera views and voxel resolution affect performance. We
also provide limitation and failure cases stemmed from our method. Additionally, we present comprehensive information on
the generation of frame data and scene data, encompassing prompts, post-processing steps, and data distribution specifics.
Finally, detailed explanations of the training and inference methodologies as outlined in the main paper are also included for
thorough understanding.
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1. Ablation Studies comparing different modalities.

Table 1. Ablation Studies comparing different input modalities. Including textual zero-shot, textual fine-tuned, and textual tasks-specific-
tuned, video, bird-eye views, and 3D point sets.

Mod. Tune. ScanQA SQA3D

(a) text Zero-Shot 13.1 34.1
(b) text Finetune 17.9 48.9
(c) text Task Tune 18.0 49.5
(d) Video Task Tune 18.9 48.2
(e) BEV Task Tune 19.2 48.4
(f) 3D Finetune 25.0 52.8

Our study evaluates performance on the ScanQA [2] and SQA3D [7] benchmarks across various modalities, including
text, video, Bird’s Eye View (BEV), and 3D. In the text modality, we employ the Llama-2-7b [10] backbone, while video
and BEV modalities share identical network architectures and training strategies as Scene-LLM. Within the text modality,
we compared object bounding boxes and object entities, finding the latter more effective.

We conducted experiments (a-c) using the text modality, encompassing zero-shot inference, fine-tuning with scene data,
and additional task-specific tuning. Experiments (d-f) explored video, BEV, and 3D modalities. Our findings reveal that video
and BEV modalities outperform the text modality in the ScanQA benchmark but underperform in SQA3D. Both methods
underperform 3D data on both benchmarks. This suggests that spatial downsampling methods may not be ideal for processing
video and image patches, underscoring the value of 3D information in preserving spatial knowledge more effectively.

2. Ablation Studies comparing different Voxel Grid Resolution.
Due to the max token length of LLama2 is 4096, we use a fixed voxel downsample resolution 0.18 in our experiment.

However, in Fig. 1 (a)(b), we show that increasing the resolution result into performance boost on QA benchmarks. This
suggest that Scene-LLM might be further improved by incorporating LLMs that process longer text tokens [11,12] to process
dense information more effectively.

(a) ScanQA-Resolution (b) SQA3D-Resolution (c) SQA3D-#views

Figure 1. EM scores on the Y-axis with decreasing voxel grid intervals (X-axis), indicating higher resolution leads to better performance.
EM score slightly increases with number of views increases.

3. Ablation Studies comparing different Number of views.
During 3D visual feature extracting process, we randomly sample views from input 3D scenes. Fig. 1 (c) reports the Exact

Match (EM) score on SQA3D using different number of views. Figure shows the EM score has minor increment with the
number of views increases, comparing with the change of voxel resolution. This further shows the main bottleneck for scene
feature extraction is the voxel resolution, which is limited by the max token length of LLama2.



Figure 2. Comparing the number of unique words and nouns in the scene dataset and frame dataset. Comparing the number of unique
words and nouns inferred by training with the model with scene data and frame data.

4. Ablation Studies comparing concept numbers.
Fig. 2 presents a detailed analysis comparing the richness of vocabulary and conceptual variety between scene data and

frame data, as well as their impact on model training. The analysis focuses on two key metrics: the number of unique words
and the number of unique nouns found in the captions of both datasets, excluding stopwords. The scene data, consisting of
200,000 captions, is compared with frame data, which contains 190,000 captions.

In terms of unique words, the metric refers to the total count of distinct words across the dataset, providing insight into the
lexical diversity. Similarly, the count of unique nouns, excluding stopwords, gives an indication of the variety and specificity
of concepts covered in the data. The figure reveals that frame data exhibits a higher count of both unique words and nouns,
suggesting a more diverse and conceptually rich dataset.

Furthermore, the figure also compares the output when the model is trained on these two datasets, using 142 validation
scenes from the ScanNet V2 dataset [5]. Notably, the model trained with frame data generates a greater number of nouns
during inference, indicating that frame data effectively imparts a broader range of fine-grained concepts to the model. This
enhanced conceptual diversity likely contributes to more robust and nuanced model performance in tasks requiring detailed
understanding and reasoning.

5. Ablation Studies comparing convergence speed.
Fig. 3 displays a comparative analysis of the training loss trajectories during the first 6,000 steps of the pretraining phase,

as specified in [10]. This phase emphasizes concept alignment, leveraging two distinct datasets: frame data, which is accom-
panied by 190,000 textual annotations, and scene data, with 200,000 textual annotations.

The graph clearly shows a quicker reduction in training loss for the model utilizing frame data as opposed to scene data.
This quicker convergence when using frame data suggests that the frame dataset provides a richer and more diverse set of
concepts for the model to learn. This diversity likely facilitates more efficient learning and understanding, enabling the model
to more rapidly adjust its parameters for optimal performance. Additionally, the swifter convergence with frame data could
be linked to the nature of the 3D data itself. Frame point set typically contains more detailed and precise information that
aligns closely with its accompanying annotations. In contrast, the scene point set, being a downsampled representation, may
not align as closely with its textual annotations. This misalignment could lead to slower learning as the model struggles to
correlate the visual data with its textual descriptions, thereby explaining the observed difference in convergence rates.

6. Result on Scene Caption Generation.
We detail our investigation into scene caption generation on the Scan2Cap benchmark [4], using task-specific fine-tuning.

This benchmark evaluates the ability of models to generate detailed captions for objects within a 3D scene, based on their
bounding box inputs. Similar to the 3D-LLM [6], the model receives the center and dimensions of an object’s bounding box as



Figure 3. Loss curves for training the projection layer at the first 6k iterations. Using frame data converges faster than using scene data.

Table 2. Result on 3D Dense Caption Benchmark Scan2Cap [4].

CIDEr BLEU-4 METEOR ROUGE

Scan2Cap [4] 35.2 22.4 21.4 43.5
3D-LLM [6] – 8.1 13.1 33.2
Scene-LLM 37.9 24.1 21.8 45.6

input, formatted as [position x, position y, position z, length x, length y, length z], with
each dimension represented as a two-digit floating-point number.

In our study, Scene-LLM is compared against both a modular method outlined in [4] and another 3D-visual-language
model from [6]. The results demonstrate that Scene-LLM outperforms the other methods across all evaluated metrics,
indicating Scene-LLM’s proficiency in comprehending 3D scenes and accurately understanding spatial coordinates when
fine-tuned for specific tasks. The result indicates that when Scene-LLM is combined with 3D grounding methods, it holds
the potential to tackle a wide array of complex tasks.

7. Result on 3DMV-VQA.

Table 3. Result on 3DMV-VQA(single room only) Benchmark.

Concept Counting Relation Comparison Overall

Scene-LLM(zs) 69.9 31.2 62.0 73.5 59.6
Scene-LLM(tt) 70.2 33.5 62.4 75.1 61.3

We evaluated the performance of Scene-LLM on the 3DMV-VQA benchmark [6], a benchmark specifically designed for
testing a model’s ability to understand and reason about 3D scenes, using data from the Habitat Matterport 3D Dataset [9].

For our evaluation, we selected a subset of the 3DMV-VQA benchmark that aligns with our model’s focus on single-room
scenarios. This subset, sourced from the benchmark’s open-source codebase, comprises a total of 1, 212 scenes. Notably, the
answers in this benchmark are generally concise, typically consisting of one word or a short phrase. To align with this format,
we employed the identifier "Answer the question using one word or one phrase" in our zero-shot (zs)
evaluation setup.

We assessed Scene-LLM under two distinct settings: zero-shot and task-specific tuning. In the zero-shot setting, where
no additional fine-tuning was applied, Scene-LLM demonstrated reasonable performance, indicating an inherent capability
to understand and respond to queries related to 3D scenes. However, when further optimized through task-specific tuning,
the model’s performance showed a notable improvement.



8. Limitation and Failure Cases
Scene-LLM faces limitations such as LLM input token length, challenges in processing dynamic scenes without a state

detector, lacking geometry feature, and language hallucinations.
See Fig. 4 for a failure case, resulted from 1) The limited token length restricts the resolution of input features, causing

the model to struggle with counting in cluttered scenes with small objects (three spoons, not one). 2) The Alfred simulator
contains less realistic rendering, which can lead the model to extract incorrect semantic features (not cup, but glass container).

There are two 

spoons in the 

scene.

How many 

spoons are there 

in the scene?
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I saw a stainless steel stove top 

kitchen with a skillet, spatula and an 

electric kettle on it. The skillet appears 

to be ready for use, possibly for 

preparing meals or other culinary 

activities. A wooden spoon is also 

visible close by, which could be used 

as an extension of a cooking utensil or 

a tool for stirring. Additionally, a cup is 

placed near the stove.

Figure 4. Failure Case due to limited resolution.

Despite these challenges, Scene-LLM represents an advancement in 3D visual understanding, paving the way for more
complex agent interactions in indoor settings.

9. 3D Dataset
Our 3D scene dataset is composed of three parts: we collect 564 training scenes from ScanNet-V2 [5], 1212 scenes from

HM3D [9] dataset, and 7075 randomly configued scenes from iThor [1] dataset. There are in total of 8851 scenes. For the
3D frame, we use Habitat simulator and Ai2Thor simulator to collect frame data. We also use the multi-view images from
ENet [8] for ScanNet frame data. For each scene, we collect 20 frames from multiple views.

10. Frame Data Generation Details.
10.1. Prompts

We use MiniGPT-V2 [3] for frame data generation. We use the identifier [grounding] as we found it can effectively
reduce hallucination in the generated texts. Here are the prompts we use:

1. [grounding] Describe this image in detail. Give as many details as possible. Say
everything you see.

2. [grounding] Describe the objects in this image.

The first prompt generates scene captions, and the second prompt generates object-centric descriptions. We filtered out
outputs with meaningless characters, and a total of around 190k textual descriptions are collected.

11. Scene Data Generation Details.
11.1. Prompts

In the section, we provide the prompts used for scene data generation. The prompts we provided are composed of two parts
Pcontext and Pinstruction, where Pcontext introduces the scene context used for data generation and Pinstruction indicates
which type of instructional data to generate.

For the scene context, we include four types of context. Here are the context types and the corresponding Pcontext:

1. Scene Caption: Given a script starting with "Scripts:", where a person describes objects
in an indoor scene ...

2. Object Caption: Based on a script beginning with "Scripts:" detailing objects in an
indoor scene ...



3. Object Entites: Using the "OBJECT LIST:", which describes objects and their bounding
boxes in an indoor environment in the format: object [position x, position y, position
z, length x, length y, length z] ...

4. Object bounding boxes: Provided is a list titled "OBJECT LIST:", which details objects
and their bounding boxes in an indoor setting, formatted as: object [position x,
position y, position z, length x, length y, length z] ...

We generate 12 types of instruction following annotations. In order to reduce hallucination, we only use some types of
contexts for each type of data generation. Here are the annotation types, the corresponding Pinstruction and the used context
types.:

1. Scene Caption: provide a summarization starting with "Summary:". The summary should
detail the objects, their positions, appearances, and the function of the room.
Scripts: Used contexts: scene caption, object entities, object bounding boxes.

2. Object Caption: provide a summarization starting with "Summary:". The summary should
detail the objects, their positions, appearances, and the function of the room.
Scripts: Used contexts: object caption.

3. General Question Answering: visualize a scenario with a Human and a robot assistant
present. Construct a Question-Answer pair, where the Human asks and the robot answers.
Format as follows: Q: [Human’s question based on the script details] A: [Robot’s
answer based on the script]. Used contexts: scene caption, object caption, object entities, object bounding
boxes.

4. Question Answering(Concept): Produce question-answer pairs wherein the human inquires
about the existence of the objects. Q: [Human’s question about the existence of
objects] A: [Robot’s response based on the script details]. Used contexts: scene cap-
tion, object entities, object bounding boxes.

5. Question Answering(Concept-Negation): Generate question-answer pairs where the human asks
about objects that are not present in the given list. The answers should confirm
the absence of these objects. Q: [Human’s question about the existence of objects]
A: [Robot’s response based on the script details]. Used contexts: scene caption, object enti-
ties, object bounding boxes.

6. Question Answering(Counting): Produce question-answer pairs wherein the human inquires
about the number of the objects. Q: [Human’s question about the number of objects]
A: [Robot’s response based on the script details]. Used contexts: object entities, object bound-
ing boxes.

7. Question Answering(Spatial): picture a setting with a Human and a robot assistant. Create
question-answer pairs wherein the Human inquires about the location of specific
objects. Frame your dialogue in this manner: Q: [Human’s question about an object’s
position. A: [Robot’s answer referring to the object list]. Used contexts: scene cap-
tion, object bounding boxes.

8. Question Answering(Comparison): Produce question-answer pairs wherein the human inquires
about differentiating aspects of the objects. The queries should compare the number
of the objects./The queries should compare the size of the objects./The queries
should compare the functionalities of the objects./The queries should emphasize
the distinctions between the objects. Please structure the dialogue as follows:
Q: [Human’s question distinguishing the objects from the script] A: [Robot’s response
based on the script details]. Used contexts: scene caption, object captions, object entities, object
bounding boxes.



9. Question Answering(Navigation): envisage a scenario where a robot navigates the area based
on human instructions. Generate question-answer pairs that relate to navigating
within the scene. The robot may inquire about directions, routes, and objects encountered
along the way. Please adhere to the following format: Q: [Robot’s question about
navigation relative to the objects in the script] A: [Human’s answer guiding the
robot, using information from the script]. Used contexts: scene caption, object bounding boxes.

10. Human-robot Dialogue: envision a scenario with a Human and a robot assistant interacting.
Create a multi-round dialogue between them. Begin the human’s lines with "Human:"
and the robot’s lines with "Robot:"." Used contexts: scene caption, object entities, object bounding
boxes.

11. Task Decomposition: suggest daily tasks or chores relevant to the described environment.
Each task should include a concise description and a step-by-step guide on how to
complete it using only objects mentioned in the scene. Answer using this format:
Task: [Brief description of the task Step-by-step instruction: 1.[First step]
2.[Second step] 3.[Third step]. Used contexts: scene caption, object entities, object bounding boxes.

12. Functionality Improvement: suggest ways to enhance the functionality of the environment.
Your recommendation should focus on improvements like better lighting for reading.
Provide your answer in the given format: Function: [Aspect of the environment
to enhance] Method: [Suggestion for improvement based on the described scene].
Used contexts: scene caption, object entities, object bounding boxes.

11.2. Data Post-processing

To process the instructional data generated from stage 2, we use LLama-2-chat-70b [10] to remove any redundant and in-
accurate information. Here is the prompt we use at this stage: Correct errors in the provided paragraph.
Eliminate repeated sentences, meaningless characters, and non-English phrases. Remove
unnecessary repetition. Complete incomplete sentences. Provide the corrected answer
directly without additional explanation.

11.3. Instruction-type Distribution

Figure 5. Distribution of the scene data by each type of instruction.

Fig. 5 shows the distribution of each type of instructional-following annotations, including question answering(QA), object
caption, tasks decomposition, scene caption, human-robot dialogue and function improvement.



12. Training and Inference Detail
12.1. Projection Layer Structure.

The feature of each point is a concatenation of CLIP-H/14 feature, point color, and point position, which is of 1030
dimension. The input dimension to the LLM is 768 dimension. The projection layer is composed of a fully connected layer
of a matrix shape [1030, 768], followed by a GELU activation layer, and then is a fully connected layer of a matrix shape
[768, 768].

12.2. Pre-training Projection Layer.

We use 32× NVIDIA A100 GPU to train the projection layer. The total batch size is 64 at this stage. We use AdamW as
the optimizer, and a learning rate of 1e− 5 to train the projection layer. The training starts with 1000 steps of warmup with a
warmup learning rate of 1e− 6. The training takes a total of 5 hours.

12.3. Finetuning the Projection Layer with the LLM.

We use 32× NVIDIA A100 GPU to finetune the projection layer with the LLM. The total batch size is 64 at this stage.
We use AdamW as the optimizer, and a learning rate of 2e − 5 to finetune the model. The training starts with 2000 steps of
warmup with a warmup learning rate of 1e− 6. The fine-tuning takes a total of 8 hours.

12.4. Task-specific Finetuning.

We use the same setting for all benchmarks for task-specific tuning. We use 32× NVIDIA A100 GPU to finetune the
projection layer with the LLM. The total batch size is 64 at this stage. We use AdamW as the optimizer, and a learning rate
of 2e− 5. For the tuning steps, we report the result of 1, 500 step for ScanQA and SQA3D, 3, 500 step for Alfred, 6, 000 step
for Scan2Cap, and 5, 000 step for 3DMV-VQA.

12.5. Inference Time.

We use a batch size of 1 to mimic a real interactive setting. The inference speed is 23.7 tokens/second on an Nvidia RTX
3090Ti.
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