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1. Future Work
In this work, we present the first-of-its-kind diffusion

model conditioned on expressive facial embeddings, which
is essentially a step towards a facial foundation model. Such
models require vast datasets of labeled data [19], in our case
paired facial images with geometry, reflectance and identity
embeddings. These are immensely challenging to acquire in
numbers, and hence we have to rely on a synthetic dataset
and inherit its method’s limitations [13]. Nevertheless, our
method could be trivially extended to larger datasets of even
scanned datasets (e.g. [24]), given their availability. More-
over, the “fitting” nature of our method, is limited by the
ambiguity between scene illumination and skin tone, es-
pecially in single-image inference. To that end, the re-
cent method of TRUST [10], could be incorporated into our
diffusion model, as an additional conditioning mechanism,
given however the availability of training data.

2. Implementation Details
A comprehensive overview of this training approach is

presented in Fig. 1. We provide the essential information
required to reproduce our method. The code-base for the
brached multi-modal AutoEncoder is built on the public
repository of the VQGAN AutoEncoder [9]. We made the
following changes: A) The first downsampling layer of the
encoder E and the last upsampling layer of the decoder D
are branched, by making 3 copies of the respective layers.
B) As proposed in FitMe [13], we use a branched discrim-
inator, in the essence of having 2 copies of the main dis-
criminator, except the last convolutional layer. The branch,
dedicated for diffuse (AD) and specular (AS) albedos, gets
a 6-channel input whereas the normals (N) branch gets a
3-channel input.

On the other hand, the main training phase is built on
the public repository of Latent Diffusion Models [19]. We
modified the provided UNet code by turning it into a 1-D
UNet network and replaced the attention-based conditional
mechanism with SPADE layers [17]. The hyper-parameters

f |Z| Embed. dim
8 16384 1

z channels Channels Channels mult.
4 128 1,2,2,4

Res. Blocks Attention Res. Batch Size
2 32 16

Table 1. Hyper-parameters used during training the branched
multi-modal AutoEncoder.

for the Conditional UNet using SPADE layers are presented
in Tab. 2 while it gets trained for 800 epochs.

As mentioned in the main paper, the overall training loss
under which FitDiff is trained, is the following:

L = Lnoise + Lid + Lper + Lverts

where Lnoise is the noise prediction loss as defined in Sec-
tion 3.3, Lid is the identity distance, Lper the identity per-
ceptual loss and Lverts the shape loss.

Identity distance To supervise the identity similarity be-
tween the ground truth and the predicted facial avatars, we
follow the methodology presented in [12, 13]. We employ
a face recognition network [7] with n layers : Cn(I) :
RH×W×C → R512. The identity distance is estimated
by computing the identity similarity between the feature
emebeddings of the input image I, and the estimated initial
image Ī0:

Lid = 1− Cn(Ī0) · Cn(I)
∥ Cn(Ī0) ∥2 · ∥ Cn(I) ∥2

(1)

Identity perceptual loss To enforce perceptual consis-
tency between the generated and ground truth avatars, we
also penalize the discrepancy between the intermediate acti-
vation layers of the face recognition network C. The identity
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Figure 1. Overview of the main phase of our training scheme: At each training iteration, the facial reflectance maps are first projected
into the latent space and subsequently concatenated to the latent vector z0, to which noise is introduced. After estimating the initial latent
vector z̄0 and rendering (R) the estimated initial avatar, perceptual and face recognition losses are applied.

Diffusion steps Noise Schedule Input Channels
1000 linear 1

Channels Cond. Dim SPADE dim.
192 1048 128

Channels mult Depth Heads
1,2,4,8 2 4

Heads Channels Batch size LR
32 16 3.2e-05

Table 2. Hyper-parameters of the main training phase.

perceptual loss is computed as:

Lper =

n∑
j

∥ Cj(Ī0)− Cj(I) ∥2
HCj
·WCj

· CCj

(2)

where HCj
, WCj

, and CCj
denote the height, width, and

number of channels of the j-th activation map, respectively.

Shape loss The difference between the estimated facial
shape v̄0 and the ground truth facial shape v is calculated
using the L1-norm:

Lverts =∥ v̄0 − v ∥1 (3)

3. Guidance Algorithm

Figure 2. An example of the sampling process for t = {40, 20, 0},

FitDiff is a diffusion-based architecture conditioned on
an identity embedding vector. It accurately generates fa-
cial identities by incorporating an effective identity guid-
ance method during the sampling phase. An example of
this process is illustrated in Fig. 2. The proposed guidance
method uses the guidance loss which is formulated as:

G = Gcosid + λ1Gperid + λ2Gmse + λ3Glan + λ4Gvgg (4)

The values of the used lambdas are λ1 = 50, λ2 = 10, λ3 =
200, λ4 = 1 where we use a gradient scale s = 75. We
run our sampling method for T = 50 steps. When run
on an NVIDIA Tesla V100-PCIE-32GB GPU, the diffusion
sampling process takes about 54 seconds, timed compara-
ble with other fitting methods like FitMe [13] and Relight-
ify [16] which take about 50 seconds and about 1min re-
spectively.

3.1. Sampling Guidance pseudo-code

Following Algorithm 1, we feed the input image I into
C, to extract the latent identity embedding vector Vtrgt and
the intermediate activation maps. On top of that, we con-
duct an alignment step wherein the scene parameters of I
are extracted by using a face detection network [21] and a
facial landmark detection networkM [2]. For each reverse
diffusion step t ∈ {T, · · · , 1}, we firstly predict the injected
noise and the corresponding noised variable zt. Then, ac-
cording to the formula in line 5 of Algorithm 1, the ini-
tial expected latent vector z̄0 is estimated, followed by the
decoding step. The estimated initial facial texture T̄0 and
the estimated initial facial shape S̄0 are computed using the
multi-branch facial texture decoder D and the PCA model
Fshp, respectively. After being rendered, the expected fa-
cial image Ī0 is generated. We compare the identity embed-
ding vectors between the target image I and the expected fa-
cial image Ī0 by using the identity cosine distance and iden-
tity perceptual loss as defined in [13]. Finally, we obtain
accurate illumination and facial expression parameters by



Algorithm 1 Diffusion sampling using Identity Guidance

Input: A facial “in-the-wild” image I, a gradient scale s,
and networks C [7], M [2],Fshp [1], V [25], and the
multi-modal decoder D .

Output: z0 = {ztex|zshp|zill}.
1: zT = {ztexT

|zshpT
|zillT } ∽ N (0, 1)

2: Vtrgt = C(I)
3: for all t from T to 1 do
4: µ,Σ← ϵθ(zt, t,Vtrgt)

5: z̄0 =
zt−

√
1−ᾱtϵθ(zt,t,Vtrgt)√

ᾱt

6: Ī0
render←−−− T̄0, S̄0

decode←−−−−−
D,Fshp

z̄0

7: Gcosid ← (1− cos(Vtrgt, C(Ī0))
8: Gperid ←

∑
i

Ci(Ī0)·Ci(I)
HCi ·WCi ·CCi

9: Gmse ← ∥Ī0 − I∥2
10: Glan ← ∥M(Ī0)−M(I)∥2
11: Gvgg ← ∥V(Ī0)− V(I)∥2
12: G = Gcosid +λ1 ·Gperid +λ2 ·Gmse+λ3 ·Glan+λ4 ·Gvgg
13: zt−1 ∽ N (µ− sΣ∇ztG,Σ)
14: end for
15: return z0

Figure 3. Guidance scale exploration: We randomly pick 10 fa-
cial images across the web. We measure the identity similarity
between the ground truth image and the generated avatars for dif-
ferent guidance scales.

penalizing the disparity between the per-pixel color inten-
sity and the 3D facial landmarks using Gmse =∥ Ī0 − I ∥2,
Gvgg = ∥V(Ī0)−V(I)∥2, and Glan =∥ M(I0)−M(I) ∥2.

4. Controlling the generated identity
Choosing the guidance scale is an important factor for

the trade-off between the intra-class diversity of the gen-
erated samples and the accuracy of the reconstruction. We
conduct an experiment by choosing 10 “in-the-wild” images
across the web and sample while using different guidance
scales for a range of s = [0, 100]. We showcase the results

in Fig. 3.

5. Partial Texture Completion
Inspired by the in-painting approach presented in Re-

lightify [16], FitDiff finds another application in the do-
main of partial reflectance map completion, illustrated in
Fig. 4. In certain scenarios, the input reflectance map may
be provided partially completed. Due to the absence of
ground truth facial reflectance maps and with the intention
of demonstrating our model’s ability to complete partial tex-
ture maps, we examine the following scenario: Given the
input images illustrated in Fig. 4a, we firstly reconstruct the
corresponding facial identity (Fig. 4b and 4e). The result-
ing diffuse albedo images are treated as pseudo-ground truth
and a part of it is randomly masked (Fig. 4c). Obtaining
completed diffuse albedo maps involves sampling while us-
ing only the input identity embedding vector. The resulting
diffuse albedos are showcased in Fig. 4d whilst the corre-
sponding renderings are shown in Fig 4f. By comparing
those figures, it is evident that FitDiff clearly retrieves the
masked parts, effectively completing the partially visible re-
flectance maps.

6. Disentanglement Control
Another application of the proposed guidance method in

Relightify [16] is used for examining the disentanglement
abilities of our proposed approach. More specifically, we
consider the following scenarios a) given the facial texture
maps as input, FitDiff generates unconditional facial shapes
b) given the input facial shapes as input, our method gen-
erates facial reflectance maps. We present some results in
Fig. 5.

7. Additional Results
7.1. Shape Reconstruction - REALY benchmark

We evaluate our method’s shape reconstruction with
state-of-the-art methods using REALY [3], a widely used
public benchmark. It contains 100 high-quality face shapes
from different ethnic and age backgrounds, based on the
LYHM dataset [5]. Contrary to previous face geometry re-
construction challenges [20], the REALY benchmark com-
putes geometric errors separately for each region of the hu-
man face while using the l2 distance between the ground
truth and the predicted meshes. The results of this bench-
mark are showcased in Tab. 3 and 4. Our method ranks 7th
on the average reconstruction error and gets surpassed only
by models that either focus solely on generating facial shape
(HiFace [4]). or produce a single albedo map with baked-in
illumination (HRN [14], Deep3D [8], AlbGAN [18], MGC-
Net [22]), which restricts the resulting avatars from being
relightable.



(a) Input
Facial Images

(b) Acquired
Diffuse Albedo (AD)

(c) Partial
Diffuse Albedo (AD)

(d) Final
Diffuse Albedo (AD)

(e) Rendering
using acquired AD

(f) Rendering
using completed AD

Figure 4. Our method can be used for facial texture completion.

@Nose @Mouth
Method avg med std avg med std
HiFace-f [4] 1.036 0.992 0.280 1.450 1.388 0.413
HiFace-c [4] 1.054 1.021 0.317 1.461 1.381 0.430
HRN [14] 1.722 1.685 0.330 1.357 1.226 0.523
Deep3D [8] 1.719 1.683 0.354 1.368 1.301 0.439
AlbGAN [18] 1.656 1.636 0.374 2.087 1.927 0.839
MGCNet [22] 1.771 1.741 0.380 1.417 1.355 0.409
GANFit [12] 1.928 1.881 0.490 1.812 1.769 0.544
FitMe [13] 1.833 1.796 0.434 1.752 1.629 0.539
PSL [15] 1.708 1.688 0.349 1.708 1.777 0.563
DECA-c [11] 1.697 1.654 0.355 2.516 2.465 0.839
CEST [23] 2.779 2.717 0.835 1.448 1.438 0.406
EMOCA-c [6] 1.868 1.821 0.387 2.679 2.419 1.112
MICA [26] 1.585 1.542 0.325 3.478 3.439 1.204
DECA-f [11] 2.138 2.137 0.461 2.802 2.699 0.868
EMOCA-f [6] 2.532 2.563 0.539 2.929 2.676 1.106
FitDiff(Ours) 1.821 1.770 0.438 1.751 1.611 0.523

Table 3. Results in the REALY benchmark [3]

Our model’s performance can be explained by the fact
that our approach is trained using synthetic data obtained
from a fitting methodology [13] and generates both albedo
and normals UV maps. The utilization of synthetic data
imposes inherent limitations on our method’s ability to ac-
curately retrieve facial shapes. This limitation stems from
the constraints imposed by FitMe on shape retrieval perfor-
mance. We eventually beat FitMe’s performance, as well

as similar methods (e.g. GANFit), showing that our re-
sults are bounded by the training data, and could improved
given a real captured dataset. Additionally, as highlighted
by the authors of FitMe, the concurrent reconstruction of
both facial shape and texture normals introduces further
constraints on the approach’s shape reconstruction perfor-
mance. Specifically, a portion of the shape information is
occasionally encoded in the normals domain rather than in



Input Shape Samples

(a) Examples of identities generated using the same shape

Input Texture Samples

(b) Examples of identities generated having the same texture

Figure 5. FitDiff can efficiently disentangle the facial shape and reflectance maps.

the actual facial shape domain.

7.2. Comparison between a single model with sepa-
rate models

In this section we analyze the effectiveness of a uni-
fied single-model architecture compared to a multi-model
approach. Using a randomly selected subset of 50 identi-
ties from the REALY benchmark [3], we fit our model fol-
lowing two distinct strategies: a) independently sampling
for facial shape and reflectance maps, and b) employing

our proposed methodology. We then evaluate their iden-
tity similarity scores and the facial shape reconstruction per-
formance by comparing the generated facial avatars against
the ground truth using the evaluation pipeline provided by
the REALY benchmark [3] . The results are presented in
Tab. 5, and demonstrate that the unified single-model ap-
proach achieves superior performance in both metrics.



@Forehead @Cheek All
Method avg med std avg med std avg
HiFace-f [4] 1.324 1.296 0.334 1.291 1.240 0.362 1.275
HiFace-c [4] 1.331 1.307 0.347 1.342 1.304 0.384 1.297
HRN [14] 1.995 1.990 0.476 1.072 1.063 0.333 1.537
Deep3D [8] 2.015 2.007 0.449 1.528 1.442 0.501 1.657
AlbGAN [18] 2.102 2.035 0.512 1.141 1.103 0.303 1.746
MGCNet [22] 2.268 2.215 0.503 1.639 1.494 0.650 1.774
GANFit [12] 2.402 3.339 0.545 1.329 1.234 0.504 1.868
FitMe [13] 2.494 2.385 0.605 1.414 1.315 0.526 1.873
PSL [15] 2.350 2.343 0.551 1.593 1.482 0.540 1.882
DECA-c [11] 2.394 2.256 0.576 1.479 1.400 0.535 2.010
CEST [23] 2.384 2.302 0.578 1.456 1.321 0.485 2.017
EMOCA-c [6] 2.426 2.383 0.641 1.438 1.294 0.501 2.103
MICA [26] 2.374 2.251 0.683 1.099 1.003 0.324 2.134
DECA-f [11] 2.457 2.341 0.559 1.443 1.353 0.498 2.210
EMOCA-f [6] 2.595 2.505 0.631 1.495 1.360 0.469 2.388
FitDiff(Ours) 2.472 2.322 0.581 1.404 1.287 0.525 1.862

Table 4. Results in the REALY benchmark [3]

Method Facial Shape ↓ ID similarity ↓

Separate Models 1.805 0.873

FitDiff(Ours) 1.764 0.911

Table 5. Comparison between the single model approach (FitDiff)
and using 2 separate models for facial reconstruction
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