## Appendix

In this supplementary material, we report the details of the data augmentations used to train the U-Net based mire segmentation, show more heatmap examples for qualitative comparison between SmartKC, Keratron and *SmartKC++*, and report the standard deviations of the experiments shown in Tables 1, 3 and 5.

## Details on Data Augmentation used for training U-Net

Table 6 shows the details of the augmentations used in training the U-Net based Mire Segmentation model on the labels generated by the fingerprint detection algorithm [12]

## More examples on qualitative improvements of heatmaps

Figure 3 shows more examples for qualitative comparison of heatmaps generated by SmartKC [9] (left), Keratron (middle) and *SmartKC*++ (right). Although the SmartKC++ heatmap still looks slightly different from the ground truth Keratron heatmaps, based on feedback from three ophthalmologists, SmartKC++ heatmaps are much more similar to Keratron heatmaps compared to SmartKC heatmaps, that will eventually result in more accurate diagnosis by the ophthalmologists.

## Standard Deviations of Tables 1, 3 and 5

Tables 7, 8 and 9 report the standard deviation of the results reported in Tables 1, 3 and 5, respectively. Standard deviations are reported for multiple runs/ splits of the Phase-1 success/failure sets.

For Table 7, Agreement between the predicted Sim-K values and those obtained from Keratron are shown. Standard deviation is calculated from 5 separate runs. Each run consists of a separate train/test split from the success set, and results in a different segmentation model. Results on the success set are on the 5 test splits, as mentioned earlier. The results on the failure set are on a single test set, hence have only 1 run for SmartKC. For SmartKC++, the standard deviation on the failure set is calculated for the 5 different segmentation models trained on the 5 splits, as mentioned earlier.

For Table 8, accuracy of automated diagnosis obtained by thresholding the Sim-K values. Standard deviation is calculated from 5 separate runs. Each run consists of a separate train/test split from the success set, and results in a different segmentation model. Results from thresholding Keratron Sim-K values are from a single run on the combined dataset. Results on the success set are on the 5 test splits, as mentioned earlier. The results on the failure set are on a single test set, hence have only 1 run for SmartKC. For SmartKC++, the standard deviation on the failure set is



Figure 3. Qualitative comparision of heatmaps generated by SmartKC (left), Keratron (middle) and SmartKC++(right)

calculated for the 5 different segmentation models trained on the 5 splits, as mentioned earlier.

For Table 9, results not involving the U-Net based mire segmentation have only 1 run, whereas the U-Net based mire segmentation has 5 runs

| Type of Augmentation  | Specific Augmentation Applied                              |  |  |  |  |
|-----------------------|------------------------------------------------------------|--|--|--|--|
| Additive Noise        | Gaussian, Laplacian, Poisson, Salt, Pepper and Salt+Pepper |  |  |  |  |
| Image Sharpness       | GaussianBlur, GammaContrast, LogContrast,                  |  |  |  |  |
|                       | SigmoidContrast and LinearContrast                         |  |  |  |  |
| Spatial Augmentations | Warp, Rotate, Scale, Translate and Flip                    |  |  |  |  |

Table 6. Different types of data augmentations applied when training the U-Net. All 3 types of augmentation are applied simultaneously, with the specific choice made randomly at each epoch

|             |                  |       | Sim-K1 |       | Sim-K2 |       |       |  |
|-------------|------------------|-------|--------|-------|--------|-------|-------|--|
|             |                  | MAE   | MAPE   | Corr. | MAE    | MAPE  | Corr. |  |
| Success Set | SmartKC          | 0.322 | 0.536  | 0.076 | 0.287  | 0.341 | 0.147 |  |
|             | SmartKC++ (ours) | 0.287 | 0.542  | 0.090 | 0.178  | 0.347 | 0.151 |  |
| Failure Set | SmartKC          | -     | -      | -     | -      | -     | -     |  |
|             | SmartKC++ (ours) | 0.054 | 0.105  | 0.001 | 0.100  | 0.223 | 0.007 |  |

Table 7. Standard Deviation of Sim-K prediction on Phase-1 dataset. Agreement between the predicted Sim-K values and those obtained from Keratron are shown. Standard deviation is calculated from 5 separate runs. Each run consists of a separate train/test split from the success set, and results in a different segmentation model. Results on the success set are on the 5 test splits, as mentioned earlier. The results on the failure set are on a single test set, hence have only 1 run for SmartKC. For SmartKC++, the standard deviation on the failure set is calculated for the 5 different segmentation models trained on the 5 splits, as mentioned earlier.

| Dataset     | Device           | KT Condition   | Acc. | Sens. | Spec. | Prec. | Recall | F1   |
|-------------|------------------|----------------|------|-------|-------|-------|--------|------|
| Combined    | Keratron         | K1 >49.995 or  | -    | -     | -     | -     | -      | -    |
|             |                  | K1 - K2 >1.523 |      |       |       |       |        |      |
| Success Set | SmartKC          | K1 >44.55 or   | 1.82 | 3.33  | 2.14  | 5.07  | 3.33   | 3.46 |
|             | SmartKC++ (ours) | K1 - K2 >2.644 | 1.02 | 0.001 | 1.36  | 4.08  | 0.001  | 3.74 |
| Failure Set | SmartKC          | K1 >44.55 or   | -    | -     | -     | -     | -      | -    |
|             | SmartKC++ (ours) | K1 - K2 >2.644 | 4.52 | 4.99  | 6.67  | 4.06  | 4.99   | 3.74 |

Table 8. Standard Deviation of Automated diagnosis on Phase-1 dataset: Accuracy of automated diagnosis obtained by thresholding the Sim-K values. Standard deviation is calculated from 5 separate runs. Each run consists of a separate train/test split from the success set, and results in a different segmentation model. Results from thresholding Keratron SimK values are from a single run on the combined dataset. Results on the success set are on the 5 test splits, as mentioned earlier. The results on the failure set are on a single test set, hence have only 1 run for SmartKC. For SmartKC++, the standard deviation on the failure set is calculated for the 5 different segmentation models trained on different splits.

| UbMS | CbML | Acc.  | F1    | MAE K1 | MAPE K1 | MAE K2 | MAPE K2 |
|------|------|-------|-------|--------|---------|--------|---------|
| X    | X    | -     | -     | -      | -       | -      | -       |
| 1    | X    | 2.857 | 3.00  | 0.157  | 0.306   | 0.062  | 0.102   |
| X    | 1    | -     | -     | -      | -       | -      | -       |
| 1    | 1    | 4.517 | 3.738 | 0.054  | 0.105   | 0.100  | 0.223   |

Table 9. Standard Deviation of *SmartKC*++ with and without various components on the Phase-1 failure dataset. UbMS: U-Net based Mire Segmentation, CbML: Clustering based Mire Localization. There is only 1 failure set - hence, results not involving the U-Net based mire segmentation have only 1 run, whereas the U-Net based mire segmentation has 5 runs