
A. Implementation
A.1. Training Details

For the NYU Depth V2 dataset, we set weight decay (λ )
to 0.001 and use a learning rate of 3×10−4. The batch size
is 24, and we use the original data size (480×640) without
any resizing.

For DDFF12, weight decay (λ ) is set to 0.0001, with a
learning rate of 1×10−4. The batch size is 8, and the input
size during training is 224× 224 pixels, with random crop
and flip augmentations applied. For evaluation, the origi-
nal image size of 383× 552 is used, following DFF-based
methods [27]. Focal stacks are arranged in ascending order
of focal distance to ensure consistency in depth processing.

For the refinement layer, we initialize the MiDaS-small
encoder backbone with pre-trained ImageNet [6] weights,
while the remaining layers are randomly initialized to allow
adaptation to our depth estimation task.

B. Experiments
B.1. Dataset

DDFF12 [12]. We follow the dataset split specified in
DFV [27]. The training set consists of six scenes, each con-
taining 100 samples, while the test set includes six different
scenes with 20 samples per scene. Each sample contains
a 10-frame focal stack along with a corresponding ground
truth disparity map. The images have a resolution of 383 ×
552 pixels. For our training and evaluation, we used a focal
stack of 5 frames, similar to DFV [27].
Mobile Depth [22] includes 11 aligned focal stacks from
11 different scenes. The image resolutions range from 360
× 640 to 518 × 774, with each stack containing between 14
and 33 frames. Since ground truth depth and focal distance
are not provided, we used this dataset solely for qualitative
comparisons on aligned focal stack images.
NYU Depth V2 [16] contains over 24K densely labeled
RGB and depth image pairs in the training set and 654 pairs
in the test set. This dataset covers a broad range of indoor
environments, with ground truth depth maps obtained using
a structured light sensor, provided at a resolution of 640 ×
480 pixels.
ARKitScenes [2] is a large-scale dataset designed for mo-
bile AR applications. For our experiments, we utilized
a subset of 5.6K images for evaluating HYBRIDDEPTH’s
zero-shot performance. This subset provides a comprehen-
sive basis for evaluating the robustness and accuracy of our
model under real-world AR conditions.

B.2. Model Performance Analysis

We conducted a performance analysis to demonstrate
the efficiency of our model compared to SOTA models
like ZoeDepth-M12-N, Depth Anything, and DFV. All tests
were performed on an Nvidia RTX 4090 GPU. Table 7

shows that HYBRIDDEPTH achieves an inference time of 20
ms, which is 4.3X faster than ZoeDepth-M12-N and 2.85X
faster than Depth Anything. Additionally, our model’s size
is 5.3X smaller than ZoeDepth-M12-N and 5.2X smaller
than Depth Anything. Despite being more compact, HY-
BRIDDEPTH provides a considerable improvement in per-
formance and is highly suitable for deployment on devices
with limited memory and storage. While DFV is faster at
8 ms and smaller in size, previous sections have shown that
its depth estimation accuracy is significantly lower.

Table 7. Performance analysis of the three SOTA models on
Nvidia RTX 4090 with DDFF12. Note: We use the ViT Large
version for Depth Anything.

Model Inference Time Size #Params

ZoeDepth-M12-N [4] 86±6 ms 1.28 GB 344.82M
Depth Anything [28] 57±5 ms 1.25 GB 335.79M
DFV 8 ± 2 ms 0.07 GB 15M
Ours 20 ± 2 ms 0.24 GB 65.6M

B.3. Qualitative Comparison

Qualitative Comparison with ARCore and DFV. Depth
estimation plays a crucial role in augmented reality (AR)
applications, where accurate depth maps are essential for
tasks such as rendering occlusions and precise object place-
ment. We compared our model against the depth maps
generated by the commercial ARCore framework [1] and
DFV [27]. Utilizing an Android app, we captured a fo-
cal stack of five images and sent it over WiFi to an edge
server for alignment and inference. Figure 7 shows that our
model preserves better edge details and object boundaries
compared to ARCore, while also producing smoother and
more reliable depth maps than DFV.
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Figure 7. Qualitative comparison with ARCore and DFV. Our
model outputs better depth by preserving object boundaries and
overall geometrical information about the scene. In our experi-
ments with ARCore, depth maps were obtained by moving the
camera around the scene until no further improvement was ob-
served.

Qualitative Comparison on Mobile Depth. Figure 8
presents additional results on the aligned scenes of the Mo-
bile Depth dataset. All deep learning methods generalize
well to these scenes without fine-tuning. In row 4, our
method successfully captures intricate details in the plants,



and in the last row, HYBRIDDEPTH provides smoother and
more accurate depth estimations, even capturing the depth
behind objects. However, our model struggles with depth
estimation for transparent surfaces, such as glass. The fo-
cal stacks in rows 6,7 are taken from the same scenes with
different camera motions, therefore have slightly different
frame alignment. We refer readers to [22] for more details
of this dataset. Overall, HYBRIDDEPTH consistently deliv-
ers smoother depth maps with better boundary preservation
compared to other methods.
Qualitative Comparison on NYU Depth V2. Figure 9
compares our model with Depth Anything on the NYU
Depth V2 dataset. Both models generate accurate depth
maps; however, our model excels at capturing depth for dis-
tant objects more closely aligned with the ground truth, as
seen in rows 3 and 6. Additionally, our model captures finer
details more effectively, particularly in row 2.

B.4. Ablation Study

Effect of Focal Stack Size. We analyzed the effect of fo-
cal stack size on HYBRIDDEPTH’s performance across the
NYU Depth V2, DDFF12, and ARKitScenes datasets (Ta-
ble 8). On the NYU Depth V2 dataset, increasing the fo-
cal stack size from 5 to 10 reduced the RMSE by 35.2%
and the AbsRel by 42.3%, while both configurations still
achieved state-of-the-art (SOTA) results. Similarly, on the
ARKitScenes dataset, using a focal stack size of 10 slightly
reduced the RMSE by 10.3%, confirming that HYBRID-
DEPTH’s performance benefits from a larger focal stack size
but remains robust even with smaller stacks. The perfor-
mance difference on the DDFF12 dataset was negligible be-
tween stack sizes, demonstrating consistent accuracy across
different configurations.

Table 8. Effect of focal stack size on HYBRIDDEPTH. Both focal
stack sizes yield new SOTA results, and there are no significant
performance differences between these two settings.

Focal Stack Size Trained Evaluated RMSE ↓ AbsRel ↓
5 NYU Depth V2 NYU Depth V2 0.128 0.026
10 NYU Depth V2 NYU Depth V2 0.083 0.015

5 DDFF12 DDFF12 0.0200 0.1695
10 DDFF12 DDFF12 0.0200 0.1690

5 NYU Depth V2 ARKitScenes 0.29 0.42
10 NYU Depth V2 ARKitScenes 0.29 0.39

Different Global Scaling Methods. We evaluated the per-
formance of various global scaling (GS) methods on the
DDFF12 dataset, as shown in Table 9. The least square
method showed competitive performance, achieving results
comparable to more complex method RANSAC, but with
a significant computational advantage. For example, it was
over 30x faster than RANSAC with 200 iterations and 50
sample size, while providing similar accuracy with only a
1.8% increase in RMSE compared to the best RANSAC
configuration. This makes the least square method the most
efficient choice for global scaling, ensuring reliable depth
estimates without adding considerable overhead.

Table 9. Comparison of global scaling (GS) methods on the
DDFF12 dataset.

Method RMSE ↓ AbsRel ↓ δ1 ↑ Time (ms) ↓
Least Square 0.0224 0.19 0.72 3
RANSAC (itr: 60, Sample size: 5) 0.0246 0.19 0.73 34
RANSAC (itr: 100, Sample size: 20) 0.0236 0.18 0.76 96
RANSAC (itr: 200, Sample size: 50) 0.0228 0.17 0.75 170
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Figure 8. Additional qualitative results on the Mobile Depth dataset. The focal stacks in rows 6,7 are taken from the same scenes with
different camera motions, therefore have slightly different frame alignment
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Figure 9. Qualitative results on the NYU Depth V2 dataset.
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