
WAFFLE: Multimodal Floorplan Understanding in the Wild
–Supplementary Material–

A. Interactive Visualization Tool
Please see the project page (https://tau-vailab.

github.io/WAFFLE) for an interactive visualization of
data from the WAFFLE dataset.

B. Additional Dataset Details
We proceed to describe the creation of our WAFFLE

dataset in the sections below, including details on curating,
filtering, and generating pseudo-ground truth labels.

B.1. Model Checkpoints and Settings

We use Llama-2 [9] for text-related tasks, and CLIP [7]
for image-related tasks. For most text related tasks we
use the meta-llama/Llama-2-13b-chat-hf
model, and for legend extraction we use the
meta-llama/Llama-2-70b-chat-hf model.
In both cases, we use the default sampling settings de-
fined by the Hugging Face API. For CLIP, we use the
openai/clip-vit-base-patch32 model.

B.2. Layout Component Detection

As part of the data collection, we train a DETR [1] object
detection model to identify common floorplan layout com-
ponents which will be later on used for the pGT extraction
and in the segmentation experiment. We use the checkpoint
TahaDouaji/detr-doc-table-detection* as the base
model, and fine-tune it on 200 manually annotated
images with augmentations, using the following labels:
floorplan, legend, scale, compass. We fine-
tune for 1,300 iterations, a batch size of 4, and a 10−4 learn-
ing rate on one A5000 GPU, splitting our data into 80%
training images and 20% test images.

B.3. Data Filtering

As described in the paper, we first scrape a set of im-
ages and metadata from Wikimedia Commons and proceed
to filter to only select images of floorplans using a two-stage
process: text-based filtering with an LLM, and image-based

*Denotes equal contribution
*https://huggingface.co/TahaDouaji/detr-doc-table-detection
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Negative
Prefixes
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Positive
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"a floor plan", "an architectural layout", "a

blueprint of a building", "a layout design"

Negative
Suffixes

"a map", "a building", "people", "an aerial

view", "a cityscape", "a landscape", "a

topographic representation", "a satellite image",

"geographical features", "a mechanical design",

"an engineering sketch", "an abstract pattern",

"wallpaper", "a Window plan", "a staircase plan"

Figure 1. The prompts used for gathering CLIP scores. (Prefixes
× Positive Suffixes) are used as positive prompts, and ((Prefixes +
Negative Prefixes) × Negative Suffixes) are negative prompts.

filtering with CLIP. All models used for these stages are de-
scribed in our main paper.

B.3.1 Text-based filtering (LLM)

First, we query an LLM in order to obtain an initial catego-
rization of our raw data. We ask it to choose what the image
is most likely a depiction of out of a closed set of categories
(i.e. multiple choice question format), marked positive (e.g.
floorplan or building) or negative (e.g. map or park), and
we filter out images categorized as negative categories. The
full prompt is shown on the leftmost column of Figure 18,
where options A and B are treated as positive and the rest
are negative.

B.3.2 Image-based filtering (CLIP)

We proceed to use image-based filtering to yield our final
dataset. This is composed of two sub-stages: first, we gen-
erate a smaller set of highly accurate images (a seed); we

1

https://tau-vailab.github.io/WAFFLE
https://tau-vailab.github.io/WAFFLE


then extend this seed to produce an enlarged dataset. These
sub-stages are described below.

Seed generation. We start by creating a highly accurate
seed of images (i.e. containing floorplans) by aggressively
filtering according to the CLIP normalized scores extracted
over positive and negative prompts. We list the prompts
used in Figure 1. As illustrated in the figure, negative
prompts correspond to images that depict categories similar
to floorplans, such as maps or satellite images. We sort the
prompts by score, and add images to the set if it passes the
following two tests: (i) All top five prompts contain floor
plan, and (ii) The sum of all prompts containing floor plan
is over 0.5. We empirically find that these tests allow for
creating a highly accurate seed of 3,402 images.

Dataset extension. Next, we use this seed to bootstrap an
image classifier, in order to enlarge the dataset. We first use
this seed to train a vision transformer binary classifier. We
take 1K images from the seed as positive samples, and 1K
images that were categorized as a negative category in the
text-based filtering step as negative samples. We fine-tune
a ViT model [2] for 5 epochs with a batch size of 4 and
a 2 ∗ 10−4 learning rate on one A5000 GPU, splitting our
data into 1,400 training images, 300 validation and 300 test
images.

To create our final dataset, we select images that pass the
following two tests: (i) classifier threshold selected to filter
out 10% of data, and (ii) the sum of normalized scores on
all positive prompts (described in Figure 1) is over 0.5.

Altogether this leads us to the final dataset of ∼19K
floorplans. In addition to the manual validation over 100
random sampled images in the dataset, we also manualy in-
pect the entire test set, and remove all image that do not
contain a valid floorplan. Based on this validation, we es-
timate that 89% of images from our full dataset are indeed
floorplans.

B.4. LLM-Driven Structured pGT Generation

Figure 18 contains the prompts used for extracting the
pseudo-ground truth (pGT) labels for our dataset. Note that
some prompts use previously extracted pGTs as inputs, such
as those for “Building Type” and “Location Information”.

The architectural feature grounding process is split into
two: legend extraction from the image metadata, and archi-
tectural information extraction from the image.

Legend Structuring from Metadata. We divide the task
of legend structuring into four sub-tasks: (i) Legend raw
content extraction (the raw text containing key–value pairs),
extracted using the prompts in Figure 19; (ii) Key–value
identification (raw text structurization) using regular ex-
pressions on the raw text legend; (iii) Legend content sim-
plification, using the prompt in Figure 20; and (iv) ground-
ing the architectural features in the legend to the image, by

Figure 2. An example of an image which contains legend text,
seen as rasterized text underneath the floorplan. Our legend key-
grounding correctly detects the keys in the image and can suc-
cessfully avoid incorrect grounding such as to the legend depicted
below.

marking the keys of the legend in the image, mapping be-
tween the legend values and the key locations. The last sub-
task is obtained by searching for the keys in the image’s
OCR detected texts. Images can sometimes contain the full
key–value legend itself in addition to the key markings (as
seen in Figure 2 for example). To avoid marking these as
well, we leverage the multiple text granularities returned by
the Google Vision API and filter out identified keys that are
part of a sentence/paragraph, and exclude areas detected as
’legend’ by our layout component detector.

Architectural Information from the Image. As men-
tioned in the main paper, we use the OCR detections within
the relevant layout components as candidates to include in-
teresting architectural information – legends in legend ar-
eas, and architectural labels in floorplan areas. Next,
we send these candidates to the LLM (similarly to the meta-
data legend extraction process) using the prompts in Figure
21 to obtain a raw legend/list of architectural labels. The
legends are formatted and grounded similarly to those ex-
tracted from the metadata. The architectural features are
translated if they are not in English using the Google Trans-



late API while maintaining the original text representation
which is used to ground them to the image.

B.5. Dataset statistics

Figure 5 shows a visualization of the different countries
in our dataset; Figure 3 shows a histogram of common
building types in the dataset; Figure 6 shows a visualization
of the distribution of words in images detected using OCR;
and Figure 4 show a histogram of the common architectural
features that are grounded in WAFFLE images.

C. Experimental Details

C.1. Building Type Understanding Task

For the building type understanding task, we fine-tune
CLIP on our training set. We train it for 5 epochs with batch
size of 256, learning rate of 10−3 and Adam optimizer, on
one A5000 GPU.

C.2. Open-Vocabulary Floorplan Segmentation
Task

We learn image segmentation by fine-
tuning CLIPSeg [6] (using base checkpoint
CIDAS/clipseg-rd64-refined) on images with
corresponding positive and negative segmentation maps.

Training details. Training data for segmentation is created
from images with grounded architectural features (GAFs),
using those that occur over 10 times in our dataset in order
to filter out noise. To avoid leakage of information from
rendered text, OCR detections are removed via in-painting
as seen in Figure 7. During training, we also apply augmen-
tations such as cropping, resizing and noising to enlarge our
training dataset, applied to both images and target segmen-
tation maps as needed.

To identify positive and negative targets for a given
image and GAF text, we use the text embedding model
paraphrase-multilingual-mpnet-base-v2 from
SentenceTranformers*, measuring semantic similarity
between GAF texts via embedding cosine similarity. Pairs
of features with high (> 0.7) similarity scores are marked
as positive and those with low (< 0.4) similarity are marked
as negative; the loss is calculated on these areas alone.

Our overall loss consists of the weighted sum of three
losses: cross-entropy over the masked positive and negative
areas (Lce), L1 regularization loss (LL1) and entropy loss
(mean of binary entropies of pixel intensities on the whole
image) (Le). Our total loss is Ltotal =

1
2Lce +

1
2LL1 +Le.

We fine-tune with the following settings: 20 epochs;
batch size 1; on one A5000 GPU; with a 10−4 learning rate;
with an Adam [5] optimizer.

*https://www.sbert.net/

Evaluation. We manually annotate 95 images for evalua-
tion with 27 common GAFs. The most common building
types in our evaluation set are churches, castles and resi-
dential buildings.

C.3. Floorplan Generation Task

For the generation task, we adopt the text to image ex-
ample provided in Hugging Face*, by fine-tuning the Stable
Diffusion (SD) [8] model
CompVis/stable-diffusion-v1-4. We add a cus-
tom sampler to avoid over-sampling the same building; in
particular, in each epoch we use only one sample out of all
those corresponding to a given <building type> and
<building name>. In addition, we resize the images to
512×512 keeping the original proportions of the image and
adding padding as needed. We train our model for 20K it-
erations with batch size of 4, a learning rate of 10−5 and
Adam optimizer, on one A5000 GPU.

For the boundary-conditioned generation task (condi-
tioned on the outer contour of the building), we first ex-
tract the outer edges for all images in the training set. We
use the Canny edge detection algorithm as implemented in
the OpenCV library*, extract only external contours*, and
remove contours with small areas. Samples where edge de-
tection fails (returns an empty mask) are excluded. We then
fine-tune* ControlNet [10]. We initialize the SD part of the
architecture with our fine-tuned SD from the previous para-
graph and the shape-condition part with a pre-trained model
trained on Canny edges masks (as this condition is similar
to our task) (lllyasviel/sd-controlnet-canny)*

We use the same custom sampler and resize as described
above. We train the model for 15K iterations with a batch
size of 4, a learning rate of 10−5 and Adam optimizer, on
one A5000 GPU.

For structure-conditioned generation (conditioned on
building layouts), we use our fine-tuned SD model from
above and fine-tune ControlNet on top of it. Unlike the
boundary-conditioned task, we fine-tuned ControlNet us-
ing external data from the CubiCasa5K (CC5K) [4] train
set. As conditions, we convert the structured CC5K SVG
data into images with pixel values representing the subset
of categories relevant to our dataset: foreground (white),
background (black), walls (red), doors (blue), and windows
(cyan). The foreground category comprises all CC5K room
categories that are not background; doors and windows are

*https://huggingface.co/docs/diffusers/v0.18.2/
en/training/text2image

*https://docs.opencv.org/4.x/da/d22/tutorial_
py_canny.html

*https://docs.opencv.org/4.x/d9/d8b/tutorial_
py_contours_hierarchy.html

*https://huggingface.co/docs/diffusers/v0.18.2/
en/training/controlnet

*https://huggingface.co/blog/controlnet
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Figure 3. Distribution of common building types extracted automatically (log scale), illustrating the rich semantics captured in WAFFLE.

Figure 4. Distribution of the grounded architectural features (log scale), among almost 3K grounded images, 25K instances grounded, and
11K unique features.

Figure 5. Number of samples per country (log scale) in WAFFLE,
showing the diversity of our dataset for both training and test splits.
Blue: training data; Orange: test data.

taken from the CC5K icon categories and overlaid on top of
foreground/background/walls to produce the condition im-
age (rather than being independent layers). We initialize the
SD part of the architecture with our fine-tuned SD from the
previous paragraph and the shape-condition part with the
model’s UNet weights. Images and conditions are resized
using the method described above. We train the model for
20K iterations with a batch size of 4, a learning rate of 10−5

and Adam optimizer, on one A5000 GPU. During inference

Figure 6. OCR words statistics. The bar plot depicts a histogram
of the number of words detected in an image; the word map on the
top right shows the most common words detected in our dataset.
As illustrated above, the raw OCR data contains semantic infor-
mation and also significant levels of noise, and thus it is challeng-
ing to operate over this data directly; hence motivating the need
for extracting data from source external to the images (e.g. linked
Wikipedia pages).

we use CFG scale 15.0 and condition scale 0.5, to fuse the
style of the input prompt (learned from floorplans in WAF-
FLE) and the structure condition.

User study. Each study contained 36 randomly-generated
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FID ↓
SD 284.6 159.6 198.4 188.3 285.1 199.2 194.3 212.2 159.2 180.6 139.6 224.0 165.9 141.6 189.5
SDFT 148.3 146.1 156.8 142.0 147.7 114.5 100.9 158.0 122.3 137.6 119.1 168.6 176.9 102.0 238.4

KMMD ↓
SD 0.13 0.06 0.11 0.09 0.16 0.09 0.13 0.12 0.08 0.07 0.05 0.13 0.07 0.06 0.08
SDFT 0.07 0.05 0.06 0.04 0.11 0.05 0.05 0.08 0.03 0.05 0.04 0.11 0.09 0.03 0.17

CLIP Sim. ↑
SD 25.3 25.2 24.4 24.2 25.3 24.0 24.2 25.8 25.9 25.2 25.5 25.1 24.7 24.6 24.6
SDFT 25.9 25.6 25.6 25.4 25.3 24.5 25.1 26.7 26.5 26.1 25.5 26.0 25.6 25.8 24.5

Table 1. Quantitative results of results on floorplan image generation split by building type, comparing the quality of images generated
with the pretrained model and our fine-tuned model.

Original

In-painted

Figure 7. An example of in-painting to preprocess data for the
segmentation task. On the left, we show the original image which
contains text indicating architectural features, including the Nave,
Side Chapels and Aisles. On the right, we show the in-painted ver-
sion of the image, which succeeds in removing these texts to pre-
vent leakage. We observe that this in-painting process may slightly
modify the appearance of the image, but the floorplan’s structure
is mostly preserved.

image pairs, with text prompts mentioning various building
types that were sampled from the 100 most common types.
Overall, thirty one users participated in the study, resulting

Figure 8. A sample question from our user study on text-
conditioned floorplan generation.

in a total of 1,116 image pairs (one generated from the pre-
trained model, and the other generated from the finetuned
model) that were averaged for obtaining the final results re-
ported in the main paper.

Participants were provided with the following instruc-
tions: In this user study you will be presented with a series
of pairs of images, generated by the prompt: ”a floorplan
of a <BUILDING TYPE>”. For example, ”a floorplan of a
cathedral”. For each pair, please select the image that best
conveys the text prompt (i.e., both looks like a floorplan di-
agram, and also looks like a plan of the specific building
type mentioned in the prompt). If you are unsure, please
make an educated guess to the best of your ability. Thank
you for participating!

A sample question from our user study is illustrated in
Figure 8. All of the questions were forced-choice, and par-
ticipants could only submit after answering all of of the



Image GT CC5K
Figure 9. Benchmark for semantic segmentation (over the walls,
doors, windows, interior and background categories) on images
from WAFFLE using the strong supervised CC5K [4] pretrained
model. We can see that our data serves as a challenging benchmark
as the model struggles with more diverse and complex floorplans.

questions.

C.4. Benchmark for Semantic Segmentation

We created a benchmark of 110 SVG images, containing
wall, windows and door annotations. We included SVG im-
ages from our test set. To obtain additional SVG images, we
also searched for SVGs that were filtered during the dataset
filtering step. Then, we used Inkscape * which allowed us to
easily annotate full SVG components at once instead of do-
ing it pixel-wise. This made the manual annotation process
less tedious and more accurate.

C.5. Wall Segmentation with a Diffusion Model

We apply a diffusion-based architecture to wall segmen-
tation by training ControlNet [10] using CubiCasa5K [4]
(CC5K) layout maps as the target image to generate and in-
put images as conditions. In particular, we convert CC5K
annotations into binary images by denoting walls with black
pixels and use these as supervision for binary wall segmen-
tation. We initialize with the CompVis/stable-di
ffusion-v1-4 checkpoint and train for 200K iterations
on train items in the CC5K dataset which provides us with
4,200 pairs of images. Other training hyperparameters are
the same as those used for ControlNet applied to other tasks
as described above. During inference, we input an image
(resized to the correct resolution) as a control, generate 25
images with random seeds (and guidance scale 1.0, CFG

*https://inkscape.org/

ResNet Diffusion

Precision 0.737 0.746
Recall 0.590 0.805
IoU 0.488 0.632

Table 2. A comparison between an existing ResNet-based wall
detection model (introduced in CC5K [4]) and a Diffusion-model
based one (detailed further in Section C.5), evaluated on our
benchmark. We can see the Diffusion-based model outperforms
the ResNet-based model across all metrics, suggesting that newer
architectures show promise in improving localized knowledge of
in-the-wild data, such the floorplans found in WAFFLE.

scale 7.5, 20 inference steps using the default PNDM sched-
uler). We discretize output pixel values to the closest valid
layout color and then use pixel-wise mode values, thus re-
ducing noise from the random nature of each individual
generation.

D. Additional Results and Visualizations

D.1. Semantic Segmentation Results

Figures 9 and 10 contain examples of test images and an-
notations from our benchmark for semantic segmentation,
and the results of the existing CC5K [4] model on them.
These figures demonstrate how the model is challenged in
detecting segments it wasn’t exposed to during training, like
pillars or curved walls. In Figure 11 we show qualitative
examples of wall detection using different model architec-
tures – the existing ResNet-152 [3] based model, and the
Diffusion-based model discussed in Section C.5. As illus-
trated in the figure, using a more advanced model architec-
ture allows for obtaining significantly cleaner wall segmen-
tations. Table 2 contains a quantitative analysis of the two
models on the wall segmentation prediction task.

D.2. Additional Open-Vocabulary Floorplan Seg-
mentation Results

In Figure 12, we show additional examples of text-driven
floorplan image segmentation before and after fine-tuning
on our data. We see that the baseline model struggles to
localize concepts inside floorplan images while our fine-
tuning better concentrates probabilities in relevant regions,
approaching the GT regions indicated in orange rectangles.

In Figure 13 we visually compare the segmentation re-
sults to those of CC5K and CLIPSeg on residential build-
ings. We observe that the supervised CC5K model (trained
on Finnish residential floorplans alone) fails to generalize to
the diverse image appearances and building styles in WAF-
FLE, even when they are residential buildings, while our
model shows a more general understanding of semantics in
such images.



Image GT CC5K Image GT CC5K
Figure 10. Additional results on the semantic segmentation benchmark. Images are annotated according to walls, doors, windows, interior
and background categories. On the right we show results obtained with CC5K [4].

Image
xxxxxxxxx

GT
xxxxxxxxx

Existing
ResNet model

Diffusion
model

Figure 11. Wall segmentation results, comparing the CubiCasa5K
(CC5K) [4] baseline segmentation model that uses a ResNet back-
bone to a modified architecture that uses a Diffusion model, as de-
scribed in Section C.5. The Diffusion-based model yields refined
wall predictions, as illustrated by the examples shown above.

D.3. Additional Generation Results

We show additional results for the generation task in Fig-
ure 14 and for the spatially-conditioned generation in Fig-
ure 15. We provide multiple examples for various building
types, showing that a model trained on our data learns the

distinctive structural details of each building type. For ex-
ample, castles have towers, libraries have long aisles, mu-
seums, hospitals, and hotels have numerous small rooms,
churches have a typical cross shape, and theaters are char-
acterized by having rows of seats facing a stage. The differ-
ences between the various types and their unique details are
further shown in Figure 17, where we illustrate examples
from our training set of various types.

In Table 1 we show a breakdown of the metrics for the
generated images according to the most common building
types in the dataset. The table compares our fine-tuned
model with a base SD model, showing that for the vast ma-
jority of building types, our fine-tuned model generates im-
ages that are both more realistic and also semantically closer
to the target prompt.

For structure-conditioned generation, we show addi-
tional results in Figure 16, where input conditions are
derived from the CC5K dataset annotations as described
above. In the figure, we show the effect of changing the
condition and CFG scales during inference, illustrating the
significance of these settings. In particular, we see that
the condition scale controls the trade-off between fidelity
to the layout condition and matching the building type in
the prompt (rather than exclusively outputting images in the
style of the CC5K fine-tuning data).
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Figure 12. In each column: segmentation results on samples of our test set before (center) and after (right) fine-tuning on our data.
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Figure 14. Additional generated floorplans, showing diverse building types (provided on the left). The left-most column shows samples
from the pretrained SD model and rest of the columns showcase the results from our fine-tuned model.
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Input Images Extracted Masks Museum Hospital Hotel

Figure 15. Additional results for boundary-conditioned generation, showing a variety of shapes (shown on the left) and building types
(shown on top).
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Figure 16. Additional results for structure-conditioned generation, showing the effect of changing condition scale (CS) and CFG scales
during inference (with a fixed seed). The condition scale controls the trade-off between adherence to the structure condition and avoiding
leakage of the CubiCasa5K style which ControlNet was exposed to in fine-tuning. We also find a relatively high CFG value to improve
image quality. Chosen values for inference are in bold.
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Figure 17. Examples of images from our dataset with their building types (shown on the left)
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Image Category Building Name Building Type Location Information

[INST]

Please read the following
(truncated) information
extracted from Wikipedia
related to an image:

--- START WIKI INFO ---

* Entity category:

xi{category}
* Entity description:

xi{description}
* Image filename:

xi{fn}
* Texts that appear in the

xi(image extracted with OCR)

xi{ocr texts}

--- END WIKI INFO ---

Now answer the following
question in English: What is
this file most likely a
depiction of?
(A) A floorplan
(B) A building
(C) A cross section of a
building
(D) A garden/park
(E) A Map
(F) A city/town
(G) A physics/mathematics topic
(H) I don’t know

Please choose one answer
(A/B/C/D/E/F/G/H)

[/INST]

The best answer is (

[INST]

Please read the following
(truncated) information
extracted from Wikipedia
related to an image of a
building:

--- START WIKI INFO ---

* Entity category:

xi{category}
* Entity description:

xi{description}
* Image filename:

xi{fn}
* Wiki page summary:

xi{wiki shows}
* Texts that appear in the

xiimage (extracted with OCR):

xi{ocr texts}

--- END WIKI INFO ---

What is the name of the
building depicted above?
Write it in English,
surrounded by brackets < >

[/INST]

The name of the building
discussed by the article is <

[INST]

Please read the following
(truncated) information
extracted from Wikipedia
related to an image of the
building {building name}:

--- START WIKI INFO ---

* Entity category:

xi{category}
* Entity description:

xi{description}
* Image filename:

xi{fn}
* Wiki page summary:

xi{wiki shows}

--- END WIKI INFO ---

What type or category of
building is building name}?
Write your answer in
English, surrounded by
brackets < >

[/INST]

The building {building name}
is a <

[INST]

Please read the following
(truncated) information
extracted from Wikipedia
related to an image of the
building {building name}:

--- START WIKI INFO ---

* Entity category:

xi{category}
* Entity description:

xi{description}
* Image filename:

xi{fn}
* Wiki page summary:

xi{wiki shows}

--- END WIKI INFO ---

Where is {building name}
located? Write the country,
state (if exists) and city
surrounded by brackets < >
and separate between them
with a semi colon, for example:
<City; State; Country>.
If one of them is unknown
write ’Unknown’, for example:
<City; Unknown; Country>,
<Unknown; State; Country>
etc.

[/INST]

{building name} is located in <

Figure 18. The prompts used for LLM-based extraction of pGTs. Each {...} placeholder is replaced with the respective image data. At
first we only have raw data (as seen in the “Image Category” prompt), but once we gather pGTs we may use them in other prompts, for
example {building name} as used in “Building Type” and “Location Information”. We ask the LLM to return a semi-structured response
(choosing an answer from a closed set; wrapping the answer in brackets etc.) so that we can easily extract the answer of interest. From
left to right: The “Image Category” prompt is used for the initial text based filtering, where categories (A) and (B) are positive and the
rest are negative. The “Building Name” and “Building Type” prompts are used for setting the building name and type respectively. The
“Location Information” prompt extracts the country, state, and/or city (whichever of these exist). Note that the country is subsequently
used for defining our test-train split.
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Legend Existence (Wikipedia) Legend Content (Wikipedia) Legend Existence (caption) Legend Content (caption)

[INST]

The image "{fn}" is a plan of
the building {building name} and
it contains the following texts,
detected by an OCR model:

{ocr texts}

Please read the following
excerpt from an article about
the building which contains
this image:

--- START EXCERPT ---

{snippet}

--- END EXCERPT ---

Now answer the following
question about the excerpt:
Does the excerpt contain a
legend for the image "{fn}",
i.e. an itemized list
corresponding to regions marked
by OCR labels in the image,
explaining what each label
signifies? Answer
yes/no/unsure.

[/INST]

The answer to the question is:

[INST]

The image "{fn}" is a plan of
the building {building name} and
it contains the following texts,
detected by an OCR model:

{ocr texts}

Please read the following
excerpt from an article about
the building which contains
this image:

--- START EXCERPT ---

{snippet}

--- END EXCERPT ---

The excerpt contains a legend,
i.e. an itemized list
corresponding to regions
marked by labels in the image.
Reproduce the legend below.

[/INST]

Sure! Here is the legend:

[INST]

The image "{fn}" is a plan
of the building {building name}
and it has the following
description:

--- START IMAGE DESC. ---

{description}

--- END IMAGE DESC. ---

Does the description above look
like it contains a legend for
the image, i.e. an itemized
list corresponding to regions
marked by labels in the image,
explaining what each label
signifies?
Write yes/no/not sure in
English, surrounded by
brackets < >

[/INST]

<

[INST]

The image "{fn}" is a plan
of the building {building name}
and it has the following
description:

--- START IMAGE DESC. ---

{description}

--- END IMAGE DESC. ---

Does the discussed image
contain a legend (as in a
key/table/code for
understanding the image)?
If so, what are the legend’s
contents? Answer with a
bulleted list in English of the
legend contents. Include only
full items and not just labels
(for example, ’1. nave’ should
be included, but ’1.’ alone
shouldn’t)

[/INST]

Answer: The legend contains:
*

Figure 19. The prompts used for extracting the legend contents. The two left prompts are used for extracting data from Wikipedia, and the
two right ones for the image caption. In both cases this is a two-step extraction: first we ask the LLM if it thinks the text contains a legend.
Only if it answers yes, we ask it for its content. This reduces hallucinations and keeps the answers accurate.



Legend simplification

[INST]

The following texts contain a legend of a {building type} floor
plan in a key:value format:

--- START LEGEND ---

{legend}

--- END LEGEND ---

Please rewrite the legend using simple and generic words.

Do:

* Include all legend parts from the list above.

* Keep it simple and short: summarize each row in one/two words

* Keep the original legend keys

* In case the features have distinct names (e.g. Chapel of the
Ascension) treat their type only (e.g. a chapel) and disregard
any specific name.

Don’t:

* Don’t invent new information

* Don’t include specific names (use their type instead)

* Don’t skip any of the legend lines above

Write your answer in English, translating any non-English terms.

[/INST]

Sure, here’s a simplified and generalized version of the legend:
*

Figure 20. The prompt used for legend simplification, serving to
clean up the original legends for the image grounding process. The
goal is to obtain a list of keys to architectural features. We aim to
shorten long descriptions, remove names, and translate any non-
English text.



Legend Existence Legend Content Arc-Feats Existence Arc-Feats Content

[INST]

The image "{fn}" is a plan
of the building {building name}
and it contains the following
texts, detected by an OCR model:

--- START IMAGE TEXTS ---

{ocr legend candidate}

--- END IMAGE TEXTS ---

Do the OCR detections above
look like they contain a legend
for the image, i.e. an
itemized list corresponding to
regions marked by OCR labels in
the image, explaining what each
label signifies?

Write yes/no/not sure in
English, surrounded by
brackets < >

[/INST]

<

[INST]

The image "{fn}" is a plan
of the building {building name}
and it contains the following
texts, detected by an OCR model:

--- START IMAGE TEXTS ---

{ocr legend candidate}

--- END IMAGE TEXTS ---

The above texts may contain,
among other things, the content
of an image legend (as in a
key/table/code for
understanding the image).
Can you extract the legend
contents from the above texts?
Answer with a bulleted list of
the legend contents.
Include only full items and
not just keys/labels (for
example, ’1. nave’ can be
included, but ’1.’ or ’nave’
alone shouldn’t).
Disregard text that doesn’t
seem like it’s part of the
legend.
Include the original
keys/labels and don’t invent
new ones. If you can’t deduce
a legend return "I don’t know".

[/INST]

Sure! Here are the legend
contents:

[INST]

The image "{fn}" is a plan
of the building {building name}
and it contains the following
texts, detected by an OCR model:

--- START IMAGE TEXTS ---

{ocr legend candidate}

--- END IMAGE TEXTS ---

Do the OCR detections above
look like they contain words
that represent architectural
feature labels?
Disregard anything that looks
like a symbol or a key (like
numbers), and any words that
represent direction (e.g.
north, east, etc.)
Write yes/no/not sure in
English, surrounded by
brackets < >

[/INST]

<

[INST]

The image "{fn}" is a plan
of the building {building name}
and it contains the following
texts, detected by an OCR model:

--- START IMAGE TEXTS ---

{ocr legend candidate}

--- END IMAGE TEXTS ---

The above texts may contain,
among other things,
architectural features marked
on the floorplan.
Out of the texts above, can you
extract those that represent
architectural features?
Like room types, halls, porches,
etc.
Don’t include anything that
looks like a symbol or a key
(like numbers). Don’t include
any words that represent
direction (e.g. north, east,
etc.).
Disregard text that isn’t
related to architectural
features.
Answer with a bulleted list
of the architectural features.
Use the original text, do not
modify, translate, or add
extensions to the text you
chose to add.
If you can’t deduce any
architectural features return
"I don’t know".

[/INST]

Sure! Here are the
architectural features that
appear in the texts you
provided:

Figure 21. The prompts used for extracting legends and architectural features from OCR detections. The two left prompts are used for
extracting legends, and the two right ones for architectural feature labels. In both cases this is a two-step extraction: first we ask the LLM
if it thinks the text contains a legend. Only if it answers yes, we ask it for its content. This reduces hallucinations and keeps the answers
accurate.
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