
Fine-Tuning Image-Conditional Diffusion Models is Easier than You Think

Supplementary Material

A. DDIM Inference

During training, the highest noise level corresponds to

the last timestep t = T , and t = 1 corresponds to a very

small noise level. The DDIM inference scheduler iterates

over a series of k timesteps τ1 > τ2 > . . . > τk > 0 and

iteratively denoises the initial noise input zτ1 . We consider

the leading and trailing schedules that are also dis-

cussed by Lin et al. [12] and show the selected timesteps for

different k in Tab. A-1. The original leading timestep

selection strategy of the DDIM scheduler excludes the fi-

nal timestep T . This leads to a mismatch between training

and inference; using the leading schedule, the model re-

ceives noise as input, even though the timestep embedding

indicates a partially denoised input. In contrast, the fixed

trailing strategy always starts with t = T for the first

denoising step, properly aligning training and inference. In

the limit of k → T inference steps, both strategies converge

to the same behavior.

In Fig. A-1, we illustrate the difference between single-

step predictions using the broken leading and the fixed

trailing DDIM scheduler for Marigold [10] and Sta-

ble Diffusion [14]. Both models output noise when using

the broken scheduler. With the fixed implementation, both

models predict the mean of their respective conditional dis-

tribution. For single-step Marigold this results in a well-

defined depth map, whereas for single-step Stable Diffu-

sion, it produces a blurry image with coarse structures that

roughly align with the input prompt.

Fig. A-3 further demonstrates the scheduler’s impact

when multiple steps are considered. It clearly shows that

the effect of the broken scheduler becomes less noticeable

as the number of inference steps increases. Additionally, the

weak text conditioning in Stable Diffusion leads to blurry

images, which gradually sharpen as more inference steps

are taken. In contrast, the strong image conditioning in

Marigold allows the model to predict reasonably accurate

depth maps already in the first step. As shown by the

heatmap in Fig. 2b in the main text, subsequent steps only

lead to small changes in the predicted distances, and most

of the scene remains unchanged.

B. Detailed Experimental Setup

Training Datasets. For a direct comparison with

Marigold [10], we use the same synthetic training datasets

offering high quality ground-truth annotations, i.e.,

Hypersim [13] and Virtual KITTI 2 [3].
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Figure A-1. Single-step outputs of Marigold and Stable Diffu-

sion. With a single step, Stable Diffusion produces a blurry image

at best, while Marigold outputs a sensible depth map. Note that

the input prompt is text for Stable Diffusion, but an RGB image

for Marigold.

Figure A-2. Virtual KITTI 2 example. Top: Synthetic RGB

image. Middle: Ground-truth depth map. Bottom: Ground-truth

surface normals, generated using discontinuity-aware gradient fil-

ters [6].

Hypersim consists of 54K photorealistic images from

365 indoor scenes, which we resize to a resolution of

480 × 640 with a far plane at 65 meters. Virtual KITTI

2 contains approximately 20K samples from four synthetic

driving scenarios under various weather conditions. These



Table A-1. Comparison of leading vs. trailing timestep selection. The timesteps selected by two DDIM scheduler timestep

selection strategies for T = 1000 timesteps and varying numbers of inference steps.

Inference Steps leading timestep selection trailing timestep selection

1 [1] [1000]

2 [501, 1] [1000, 500]

4 [751, 501, 251, 1] [1000, 750, 500, 250]

10 [901, 801, 701, 601, 501, 401, 301, 201, 101, 1] [1000, 900, 800, 700, 600, 500, 400, 300, 200, 100]

images are cropped to 352× 1216 pixels, and the far plane

is set to 80 meters.

Since Virtual KITTI 2 does not provide annotations

for surface normals, we compute them ourselves with the

ground-truth depth maps, employing discontinuity-aware

gradient filters from [6]. A qualitative example of the re-

sulting normals can be seen in Fig. A-2.

Data Preprocessing. Following Marigold’s approach for

depth estimation, we remove outliers, i.e., values below the

2nd percentile and above the 98th percentile, and normalize

the depth map to the range [−1, 1]. Then, we repeat the

normalized depth map 3 times along the color channel to

match the VAE encoder’s expected input shape. Normals,

on the other hand, can be encoded directly since they are

already in the desired range of [−1, 1] and match the num-

ber of channels. The only data augmentation we utilize is

random horizontal flipping.

Training Details. We mask out undefined depth values in

the Hypersim dataset, and pixels surpassing the far plane

for Virtual KITTI 2. When training Marigold for normal

prediction as a diffusion estimator, the mask is downsam-

pled by a factor of 8 to match the latent resolution. Thus,

we neither enforce nor supervise undefined regions. For

the end-to-end fine-tuning of GeoWizard, both the scale and

shift invariant depth loss and the angular loss are optimized

jointly. Scaling the depth loss by a factor of 0.5 roughly

ensures equal magnitude.

Evaluation Datasets. For monocular depth estimation,

we follow the evaluation strategy of Marigold and evaluate

on commonly used benchmarks. NYUv2 [16] and Scan-

Net [4] provide RGB-D data of indoor environments cap-

tured with Kinect cameras. We use the official NYUv2

test split, consisting of 654 instances, while for ScanNet,

Marigold’s set of 800 randomly sampled images from the

312 validation scenes [10] is employed. ETH3D [15] and

DIODE [17] offer high-resolution depth data for both in-

door and outdoor scenes, derived from LiDAR sensors. We

evaluate on all 454 samples in ETH3D and on DIODE’s

validation set, comprising 325 indoor and 446 outdoor ex-

amples. For KITTI [8], consisting of outdoor driving scenes

Table A-2. Frozen vs. fine-tuned VAE decoder. We conduct

end-to-end fine-tuning of Marigold [10] for depth estimation, and

assess the effect of freezing or fine-tuning the weights of the pre-

trained VAE decoder.

Decoder
NYUv2 [16] KITTI [8] ETH3D [15] ScanNet [4] DIODE [17]

AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑

Frozen 5.2 96.6 9.6 91.9 6.2 95.9 5.8 96.2 30.2 77.9

Fine-tuned 5.3 96.5 9.6 91.9 6.2 96.0 5.8 96.1 30.2 77.7

captured by vehicle-mounted cameras and LiDAR sensors,

the Eigen test split [5] is used, containing 652 images.

Regarding surface normal estimation we utilize the offi-

cial DSINE [1] evaluation pipeline and data, comprised of

the NYUv2 test split, 300 ScanNet [16] samples, the full

iBims-1 [11] dataset, which is a small high-quality RGB-D

dataset of 100 samples, and Sintel [2], made up of 1064 syn-

thetic outdoor examples derived from an open-source 3D

animated short film.

Evaluation Details. For most existing methods in Tab. 5

and Tab. 6 we obtain the performance metrics either from

the papers introducing these methods or from the Marigold

and DSINE papers. The missing scores, like those of the

newer GeoWizard [7] and DepthFM [9] models, are ob-

tained by reevaluating the respective models with their of-

ficial inference code and released checkpoints. In the case

of DepthFM, the prediction alignment with respect to the

ground-truth metric depth happens in the log metric space.

C. Additional Results

GeoWizard for Depth Estimation. GeoWizard [7]

jointly predicts depth and surface normals, using a simi-

lar training and evaluation setup as Marigold. We find that

GeoWizard suffers from the same flaw in the DDIM im-

plementation as Marigold, and end-to-end fine-tuning the

model for depth and normal estimation significantly boosts

the performance (see Tab. A-3 and Tab. 3 in the main text).

In particular, the fine-tuned model performs better than both

the fixed single-step model and the previously best reported

results with 50 steps and ensembling of 10 predictions.
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Figure A-3. Few-step inference of Marigold and Stable Diffusion. With more steps, the adverse effects of the broken DDIM scheduler

get less pronounced. Both Marigold and Stable Diffusion produce sharper outputs with more steps, but the difference is much greater for

Stable Diffusion.



Table A-3. Fixed DDIM scheduler and end-to-end fine-tuning (E2E FT) for GeoWizard’s [7] depth estimation. We use the official

code and model weights to re-evaluate the method on all datasets. Inference time is for a single 576×768-pixel image, evaluated on an

NVIDIA RTX 4090 GPU. We obtain significant speed-ups, improving results.

Method Steps Ensemble
Inference

time

NYUv2 [16] KITTI [8] ETH3D [15] ScanNet [4] DIODE [17]

AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑

GeoWizard [7] 50 10 72 s 5.2 96.6 9.7 92.1 6.4 96.1 6.1 95.3 29.7 79.2

reproduced by us 50 10 72 s 5.7 96.2 14.4 82.0 7.5 94.3 6.1 95.8 31.4 77.1

GeoWizard + DDIM fix 1 1 254ms 5.8 96.1 13.3 84.7 7.8 94.3 6.2 95.7 32.0 76.0

GeoWizard + E2E FT 1 1 254ms 5.6 96.1 9.8 91.4 6.3 95.7 5.9 96.2 30.6 77.9

Table A-4. Comparison of DepthFM [9] with the DDIM-fixed and end-to-end fine-tuned (E2E FT) Marigold and Stable Diffusion

models. We re-evaluated DepthFM [9] on all datasets using the official code and model weights, with 4 inference steps and an ensemble

size of 6. Inference time is for a single 576×768-pixel image, evaluated on an NVIDIA RTX 4090 GPU.

Method Steps Ensemble
Inference

time

NYUv2 [16] KITTI [8] ETH3D [15] ScanNet [4] DIODE [17]

AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1↑

DepthFM [9] 4 6 1.67 s 6.5 95.6 8.3 93.4 — — — — 22.5 80.0

reproduced by us 4 6 1.67 s 6.9 95.4 11.4 88.1 6.5 96.2 8.1 92.5 25.0 78.3

DepthFM 1 1 132ms 7.5 95.0 11.6 87.5 6.7 96.0 8.3 92.3 25.3 77.9

Marigold [10] + E2E FT 1 1 121ms 5.2 96.6 9.6 91.9 6.2 95.9 5.8 96.2 30.2 77.9

Stable Diffusion [14] + E2E FT 1 1 121ms 5.4 96.5 9.6 92.1 6.4 95.9 5.8 96.5 30.3 77.6

Further Comparisons to DepthFM. DepthFM [9] pro-

poses a direct mapping from input images to depth maps

through flow matching, leveraging Stable Diffusion v2 [14]

as a prior. We observe that, apart from the ETH3D δ1

and DIODE [17] metrics, a simpler approach like E2E FT

achieves better performance with a more than 10× speedup

as seen in Tab. A-4.

Fine-Tuning the VAE Decoder. By default, we keep the

pretrained VAE decoder frozen while conducting end-to-

end fine-tuning. Tab. A-2 shows that fine-tuning the weights

of this decoder does not improve performance.

Further Qualitative Samples. Fig. A-4 and Fig. A-5

show qualitative results for depth and normals estimation,

respectively, comparing Marigold [10] and the end-to-end

fine-tuned models. The fixed single-step model fails to pro-

duce sharp results, while the multi-step model exhibits no-

ticeable over-sharpening and high-frequency noise artifacts

(even after ensembling), particularly in the normals estima-

tions. In contrast, the end-to-end fine-tuned models do not

exhibit these issues.

Addendum

We were made aware of recent work by Xu et al. [18].

Similar to us, they directly fine-tune Stable Diffusion in an

end-to-end fashion, however, we arrive to this point in a

very different way. We initially discovered the issue with

the DDIM scheduler, fixed this in Marigold, and in turn ar-

rived to an end-to-end fine-tuning scheme that works for

Marigold. Surprisingly, our ablations showed that this also

works well for direct fine-tuning of Stable Diffusion. The

main contribution of Xu et al. is an approach to fine-tune

Stable Diffusion (for a broader spectrum of tasks). How-

ever, even with additional modules on top, their method

achieves lower scores than some of the baselines. As

such, these results might lead one to conclude that end-to-

end fine-tuning is not a suitable alternative to multi-step,

diffusion-based depth and normal estimation. In contrast,

our simple end-to-end fine-tuning setup does outperform

diffusion baselines, demonstrating that it is an effective and

efficient alternative.
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Figure A-4. Additional qualitative samples for depth estimation. “Marigold (X , Y )” denotes Marigold using X inference steps with

an ensemble of size Y .



RGB Marigold (1, 1) Marigold (50, 10) Marigold + E2E FT GeoWizard + E2E FT

Figure A-5. Additional qualitative samples for normal estimation. “Marigold (X , Y )” denotes Marigold using X inference steps with

an ensemble of size Y .
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