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A. Introduction

We provide additional material in support of our main

paper. This document is organised as follows:

• In Appendix B, we describe the steps involved in COPS

and we show them qualitatively on some point clouds.

• In Appendix C, we provide implementation details of

COPS and specify the hyper-parameter used in our ex-

periments to facilitate reproducibility.

• In Appendix D, we ablate the role of the specific layer of

the DINOv2-Base architecture from which we perform

feature extraction.

• In Appendix E, we investigate the role of the number

of spatial and semantic nearest neighbours used in the

Geometric Feature Aggregation (GFA) module.

• In Appendix F, we provide additional qualitative results

on ScanObjectNN [9] and FAUST [2] datasets.

• In Appendix G, we provide details on the computational

resources utilised.

B. Pipeline visualisation

In Fig. 1, we provide a detailed visualisation of the dif-

ferent steps required by COPS on four point clouds from

ShapeNetPart [11]. The first three columns illustrate the

feature extractor Φ, which processes the input point cloud de-

picted in the first column, extracts features using DINOv2 [6]

(second column), and modifies them using the Geometric

Feature Aggregation (GFA) module (third column). The next

three columns illustrate the segmenter Ψ, which decomposes

the object into parts via feature clustering (fourth column,

colours are not informative) and assigns each part a seman-

tic label (sixth column) by leveraging PointCLIPv2 [12]

predictions (fifth column) as semantic anchors. The last

column displays the ground-truth segmentation. The mini-

mal difference between the last two columns suggests that

COPS produces very accurate segmentations, despite the low

quality of the PointCLIPv2 predictions shown in the fifth

column.

C. Implementation details

In this section, we discuss implementation details and the

hyper-parameters of COPS.

Point cloud processing. We perform rendering at the origi-

nal point cloud resolution to retain finer details. Then, we

randomly sample 10,000 points from each object, we update

the pixel-to-point mappings utilised to back-project features

to 3D, and we project them back. Next, GFA performs far-

thest point sampling (FPS) to find super points for feature ag-

gregation. Subsequently, we randomly sample 2,048 points

to obtain semantic labels via PointCLIPv2. Lastly, we per-

form clustering on these sampled points and we assign each

cluster a semantic label via Hungarian with PointCLIPv2’s

predictions.

Rendering. We utilise PyTorch3D [8] for rendering. No-

tably, we set: (i) camera orientations, (ii) point size, and

(iii) rendering canvas size. We have defined three camera

settings: 6 orthogonal cameras, facing front, back, left, right,

top, and bottom in Fig. 2(a); 10 cameras, following Point-

CLIPv2 [12] in Fig. 2(b); 48 cameras in Fig. 2(c). We set

the point size to small values for datasets whose point clouds

are dense, i.e., containing many points. We enlarge the point

size for sparse datasets, such as ShapeNetPart, to obtain

smooth renders. Lastly, we set the canvas size to the input

size of DINOv2 of 224 × 224 pixels, ensuring no scaling

and/or cropping is required. When photometric (RGB) in-

formation is not available, we render depth maps. We utilise

both the depth maps produced by PyTorch3D, where light

pixels correspond to close points, and the depth maps in

PointCLIPv2’s style, where the dark pixels correspond to

points close to the camera. We found COPS to perform the

best with PyTorch3D’s depth maps.

Feature extraction. DINOv2 is based on the vision trans-
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Figure 1. Detailed visualisation of the steps required by COPS. From left to right: input point cloud, intermediate features obtained by

3D-lifting DINOv2 features, final features obtained with GFA, part decomposition obtained via feature clustering (colours are not informative

because cluster labels are not semantic), PointCLIPv2 predictions, COPS predictions, and ground-truth segmentation. By disentangling

part decomposition (fourth column) from semantic label assignment, COPS can leverage noisy PointCLIPv2 predictions (fifth column) to

produce accurate segmentations (sixth column).

(a) 6 views (b) 10 views (c) 48 views

Figure 2. Cameras visualised in 3D space. (a) shows the 6-camera setting, where the cameras are orthogonal to one another. (b) shows the

10 cameras adapted from PointCLIPv2 [12]. They capture the object from more sides, while the top and bottom views are similar to those

in (a). (c) shows the largest setting, with 48 cameras sampled bottom to top on eight arches around the object. While this configuration

provides more views than (a) and (b), there are many redundant views which contribute little to the overall performance, as we have shown

in the corresponding ablation study.



former architecture [3, 10]. It splits the image into patches

of 14× 14 pixels and outputs a feature vector for each patch.

However, we need pixel-level, or dense, features to perform

lifting to 3D. Therefore, we upsample the feature maps to

the input image size of 224× 224 pixels using bicubic inter-

polation.

Geometric feature aggregation (GFA). GFA works in three

steps: (i) it samples super points, (ii) it aggregates features

via either spatial or semantic attention, and (iii) it upsam-

ples super point features to the whole point cloud. GFA has

two hyper-parameters: the number of super points and the

number of neighbours considered in the aggregation step.

For the first, too many super points may lead to reduced

spatial/semantic consistency, while too few can make the

features collapse, not accounting for the local variability of

the point cloud. By default, we sample 256 super points.

For the second, the more the points and the larger the con-

text window used to compute the super point’s feature. By

default, we set it to 10 for spatial attention and to 90 for

semantic attention. In Sec. E, we conduct an ablation study

on these hyper-parameters.

D. Ablation study on DINOv2-Base layers

Following FoundPose [7], in Tab. 1 we evaluate COPS

with different patch descriptors. We utilise DINOv2-Base

(ViT-B) and sample patch-level features at different levels,

showing how performance changes. We observe an incre-

ment in performance as we utilise increasingly higher-level

patch descriptors, which encode more abstract semantic in-

formation, e.g., about parts [6]. We note that performance

improves in certain categories, such as “airplane”, as we

move towards higher-level representations. However, we

find that for other categories, such as “mug” or “knife”,

lower-level representations may provide the optimal level of

abstraction for achieving accurate part segmentation results.

This highlights the need for further exploration in future

work, assessing how to consider representations at different

scales to achieve consistent improvements.

E. Ablation study on GFA

In Tab. 2(a), we conduct an additional ablation study on

the GFA module. We evaluate 13 distinct configurations,

including the standard GFA employed in the main paper.

Specifically, we vary the number of sampled super points,

the number of neighbours taken into account during the at-

tention operation, i.e., the “context window”, and weighting

by distance. In Tab. 2(b) we repeat these experiments by

swapping the order of spatially- and semantically-consistent

feature aggregation. The results show that our default con-

figuration performs the best. We observe that increasing the

number of neighbours reduces performance, thus suggesting

that a smaller “context window” allows GFA to aggregate

only the most relevant features. Raising the number of super

points leads to a decrease in performance because it limits

the effect of GFA. If all the points are kept as super points,

GFA has no effect, while if too few super points are sam-

pled, features can collapse. Lastly, performing spatially-

before semantically-consistent feature aggregation makes

GFA capture geometric knowledge better, thus achieving

higher performance.

F. Additional qualitative results

Following our main paper, we show additional qualitative

results on other datasets. Fig. 4 shows qualitative results on

FAUST [2], using annotations from SATR [1]. Fig. 3 shows

qualitative results on ScanObjectNN [9] in the most challeng-

ing OBJ-BG setting. Objects such as “bed” or “sofa” pose

challenges in distinguishing between the individual parts due

to overlapping geometry or intricate designs. Moreover, the

real-world point clouds in ScanObjectNN [9] are noisy and

can contain several occlusions, making it difficult to separate

them into distinct parts.

G. Resources used

Our training-free method does not require extensive com-

putational resources and is designed to be computationally

efficient. We run all our experiments on a consumer desk-

top NVIDIA RTX 3060 GPU with 12GB of VRAM and

a laptop NVIDIA RTX 2070 Super Max-q with 8GB of

VRAM. Evaluation time on the NVIDIA RTX 3060 GPU

took approximately: 40 seconds on FAUST [1]; 1 hour on

ScanObjectNN [9]; 3 hours on PartNetE [4]; 9 hours on

ShapeNetPart [11]; 12 hours on PartNet [5]. All the reported

inference times are doubled if running the inference on the

consumer laptop with the NVIDIA RTX 2070 GPU with

8GB of VRAM. Further optimisations, such as pre-rendering

views for all objects, can be introduced to lower test times.

However, they can take up a large amount of storage space.
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Table 1. Part segmentation performance on ShapeNetPart [11] obtained when extracting DINOv2 base features from different layers, i.e., at

different depths. DINOv2 base is based on ViT-B, and has 13 layers. The highlighted row corresponds to the results shown in the main

paper.
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Figure 3. Qualitative results on ScanObjectNN [9]. Top to bottom: input point cloud with RGB colours, PointCLIPv2 predictions, COPS

predictions, and ground-truth segmentation.
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(a) Spatially-consistent aggregation followed by semantically-consistent aggregation
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3 512 512 63.9 60.1 50.2 71.5 71.0 29.2 71.0 65.6 72.0 79.2 48.6 91.0 26.4 55.1 53.7 46.7 57.9 73.0

4 256 128 64.2 60.4 50.6 69.7 66.7 30.1 71.6 65.5 72.5 80.4 48.6 91.1 25.8 63.3 54.9 46.4 56.1 72.6

5 128 256 64.1 60.3 50.7 71.4 68.1 29.6 71.3 65.3 72.1 79.7 48.6 91.0 26.2 59.3 53.9 46.7 58.6 72.7
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8 90 90 61.8 58.8 49.3 69.7 69.2 27.4 67.9 63.9 74.4 79.7 48.5 89.9 25.0 52.6 52.2 47.9 53.7 69.4

9 256 170 59.0 55.3 47.6 59.8 67.3 25.1 64.8 60.9 69.2 80.3 48.2 89.2 24.0 36.5 51.4 46.7 48.8 65.7

10 10 90 61.6 58.1 49.3 66.4 66.9 27.1 68.3 64.1 72.1 79.7 48.3 90.5 26.3 46.5 53.1 48.7 54.2 68.9

(b) Semantically-consistent aggregation followed by spatially-consistent aggregation

Table 2. Ablation on the geometric feature extractor (GFA) module on ShapeNetPart [11]. Results were obtained using 10 rendered (depth

only) views. All experiments use a two-stage GFA. Panels (a) and (b) show how performance changes when swapping the two stages. Each

of the first two groups of columns reports the configuration for the two stages. “Sup.” is the number of super points sampled from the input

point cloud. “Nei.” is the number of neighbours considered during the aggregation phase. The highlighted row corresponds to the results

shown in the main paper.
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Figure 4. Qualitative results on FAUST [2]. Top to bottom: input texture-less point cloud (coloured in yellow for visualisation purposes),

PointCLIPv2 predictions, COPS predictions, and ground-truth segmentation provided by SATR [1].


