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Abstract

In the supplementary materials, we provide additional
information on related work, the experimental settings, and
our experimental results. The supplementary material is
presented as follows:

• Models, datasets, and code – links to the various mod-
els, code, new datasets, and their annotations used in
our research.

• Additional information on related work – a review of
additional studies that are closely related to our re-
search.

• Evaluation settings – additional details on our new
E-PO dataset and supplementary information on the
crafted patches used in the experiments involving the
adversarial use cases.

• Dataset exploration – a glimpse into the new datasets
and their corresponding models’ explanations.

• Experimental results – details on the selection process
of the XAI techniques used in our research, quantita-
tive evaluation of uncertainty techniques, robustness
assessment of the objectness saliency map, DiL run-
time analysis, and additional evaluation results.

• WACV revision additions – all materials that were
added as a result of the paper revision and rebuttal.

1. Models, Datasets, and Code
In our research, we evaluated DiL’s performance using

various models and datasets. The models’ weights are avail-
able here: http://tinyurl.com/DIl-models. The
datasets and their annotations are available here: http:
//tinyurl.com/DiL-datasets. DiL’s code imple-
mentation is available here: http://tinyurl.com/
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DiL-code. These artifacts will be publicly available upon
the paper’s publication.

2. Additional Information on Related Work

In Table 1, the existing evaluation metrics, uncertainty
techniques, detection methods, and mitigation methods for
each type of abnormality are summarized with respect to
their ability to: i) capture the model’s internal decision-
making process, i.e., reflect the model’s inner behavior (the
”reflects an internal effect” column); ii) quantify the ab-
normal scene’s effect (the ”quantifiable” column); iii) be
applied in a practical context, such as in the detection of
abnormalities or mitigation of their effect (the ”actionable”
column); and iv) provide an appropriate explanation for or
reasoning behind the model’s decision (the ”explainable”
column).

As can be seen in the table, none of the existing met-
rics or methods possess all of the capabilities. For exam-
ple, although all of the performance metrics listed in the
table quantify abnormalities’ impact on the model’s predic-
tions, they fall short in other aspects, i.e., they do not reflect
the model’s inner behavior or cannot be leveraged for pre-
ventative purposes. In addition, most of the performance
metrics can partially explain their output based on their in-
ternal parameters (e.g., the precision metric’s output can be
explained by the number of true positive predictions and
the total number of positive predictions). Moreover, the un-
certainty techniques struggle to effectively handle various
types of abnormalities (as elaborated on Section 5.3. Fur-
thermore, all detection and mitigation methods that focus
on partial occluded (PO) objects, out-of-distribution (OOD)
objects, and adversarial attacks (Adv.) are actionable, how-
ever all of them focus on just one type of abnormality. In
addition, most of them rely on the model’s final prediction
and not its internal perceptions, do not quantify the impact
of abnormalities on the model’s predictions, and cannot ex-
plain their output.

http://tinyurl.com/DIl-models
http://tinyurl.com/DiL-datasets
http://tinyurl.com/DiL-datasets
http://tinyurl.com/DiL-code
http://tinyurl.com/DiL-code
http://tinyurl.com/DiL-code


Abn. Type Category Name
Reflects

an internal
effect

Quantifiable Actionable Explainable

mAP [38] ✕ ! ✕ !*
oLRP [28] ✕ ! ✕ !*
IOU [23] ✕ ! ✕ !*
Precision ✕ ! ✕ !*

Recall ✕ ! ✕ !*

All Performance Metric

Probability-based detection quality (PDQ) [8] ✕ ! ✕ ✕

Spatial Uncertainty [37] ✕ ! ✕ ✕

One-stage Uncertainty Estimation [17] ✕ ! ✕ ✕

BayesOD [9] ✕ ! ✕ ✕

Monte Carlo dropout [5] ✕ ! ✕ ✕

Ensemble methods [18] ✕ ! ✕ ✕

All Uncertainty Quantification Techniques

CertainNet [6] ✕ ! ✕ ✕

PO Detection Multi-level coding [30] ✕ ✕ ! ✕

Amodal instance segmentation [4] ✕ ✕ ! ✕

Scene de-occlusion [43] ✕ ✕ ! ✕

Context reconstruction [29] ✕ ✕ ! ✕
PO PO Mitigation

CompositionalNet [34] ! ✕ ! ✕

Medical imaging OOD [15] ! ✕ ! !

OOD uncertainty aware [22] ! ✕ ! !OOD Detection
Runtime monitoring OOD [11] ! ✕ ! ✕

Unknown-aware OOD [3] ! ! ! ✕
OOD

OOD Mitigation 3D OOD detection [13] ✕ ✕ ! ✕

DetectorGuard [39] ✕ ✕ ! !
Adv. Detection X-Detect [12] ✕ ✕ ! !

Ad-YOLO [14] ✕ ✕ ! ✕

SAC [24] ✕ ✕ ! ✕

Feature energy [16] ! ✕ ! ✕

Object seeker [40] ✕ ✕ ! ✕

Patch zero [41] ✕ ✕ ! ✕

Adv. Attacks
Adv. Mitigation

Adversarial pixel masking [2] ✕ ✕ ! ✕

All All Distinctive localization (ours) ! ! ! !

Table 1. Related work comparison table.

3. Evaluation Settings
3.1. Additional Information on Evaluation Settings

All of our experiments were performed on the CentOS
Linux 7 (Core) operating system with an NVIDIA GeForce
RTX 3090 Ti graphics card with 24 GB of memory. The
code used in the experiments was written using Python
3.8.2, PyTorch 1.13.1, Numpy 1.23.4, and MMDetection
3.0 packages.

3.2. E-PO Dataset

In this research, in addition to the DiL metric, we in-
troduce our new E-PO dataset, which was created due
to the lack of high-quality and diverse datasets that con-
tain scenes featuring occluded objects [32]. The creation
of a real-world partial occlusion dataset whose images
are physically filmed by a camera is a highly time- and
resource-consuming task. Therefore, most of the existing
datasets are synthetic datasets that emulate partial occlusion
scenes. One example of such a dataset is the Occluded-
PASCAL 3D+ [34], which includes images from the Pas-

cal3D+ dataset that are overlaid with objects cropped from
the COCO dataset. Another example is a dataset introduced
by [36] in which synthetic occlusion masks were gener-
ated and used to digitally cover objects in the scene. Im-
ages (a) and (b) in Figure 1 are examples of images from
those datasets. Although synthetic datasets attempt to cre-
ate scenes that contain partial occlusion, they may fall short
in reflecting the partial occlusion scenes that are found in
real-world scenes; by synthetically placing one object on
top of another, the scenes created are from a different distri-
bution than the real-world scenes [32].

There is one non-synthetic dataset with real-world par-
tially occluded scenes - the KITTI INStance segmentation
(KINS) dataset [30]. This dataset is based on the KITTI
dataset [7] and contains a substantial number of annotated
images (15K) of people and vehicles taken from the cam-
era of a vehicle. Image (c) in Figure 1 is an example of
an image from this dataset. Despite its sufficient size, this
dataset lacks class diversity, since it contains only two types
of objects (’person’ and ’vehicle’). Therefore, this dataset
cannot be used for the evaluation of object detection models



Figure 1. Various partial occlusion examples from the (a) Oc-
cludedPASCAL 3D+ dataset, (b) A-Fast-RCNN dataset, (c) KINS
dataset, and (d-e) our new E-PO partial occlusion dataset; the lat-
ter two are accompanied by their respective prompts.

that were trained to detect other types of objects (such as the
COCO benchmark dataset).

To address these challenges, we introduce the E-PO
dataset - a realistic partial occlusion dataset synthetically
generated with the assistance of Dall-E 2 [31]. The E-PO
dataset contains 100 images of occluded objects related to
28 of the classes in the COCO dataset. Each image in the
E-PO dataset features at least one partially occluded object
that would most likely not be detected by an object detec-
tor that was trained on the COCO dataset. The images in
the E-PO dataset cover a wide range of occlusion scenar-
ios (both intra-class and inter-class occlusion) that can oc-
cur in real-world situations, such as a person that is cov-
ered by a large hat, an orange covered by other oranges,
etc. The E-PO dataset includes images with different de-
grees and angles of occlusion, highly diverse occluded and
occluding objects, different real-world lighting conditions,
etc. Images (d) and (e) in Figure 1 are examples of images
from the E-PO dataset accompanied by the prompt used to
create these images. The creation and selection of the im-
ages in the E-PO dataset was performed as follows: 1) a set
of image candidates was generated using the Dall-E 2 API;
2) from the images generated in the first step, we selected
the ones that were the most realistic looking and contained
partially occluded objects; 3) the selected set was passed
to different object detection models to examine the scene’s
level of difficulty. The images selected for the E-PO dataset
were those found to be highly challenging for a range of ob-
ject detection models (the models that ”missed” the partially
occluded object in a significant portion of the dataset, with

Figure 2. Random noise patch attack. The patch failed in deceiv-
ing the target model.

misidentification rates ranging in [77%,97%], as described
in Section 5 of our paper).

3.3. Adversarial Patch Crafting Process

To evaluate DiL’s ability to map and reflect the model’s
internal decision-making process when faced with delib-
erate adversarial attacks, we constructed two datasets that
contain scenes with adversarial patches (the Adv-COCO
and Adv-Superstore datasets). To do so, we crafted four
different adversarial patches, each of which had the primary
objective of deceiving the model and causing it to ’ignore’
the object covered by the patch. The patch attacks are de-
signed to manipulate the model’s perception and internal
processes, resulting in the misidentification of an object.
The primary reasons for focusing on this particular type of
attack, which causes a target object to ’disappear,’ are its ap-
plicability for real-world threat models and that its ease of
use by attackers. As part of our evaluation, four adversar-
ial patches were crafted to deceive OD models trained on
the COCO and SuperStore datasets (two patches for each
dataset), referred to as use cases 5 and 9 in the paper, re-
spectively.

The adversarial patches were crafted based on the
DPatch attack [25] with the following adjustments: 1) the
patch was placed on the main object in the scene; 2) the at-
tack learning rate was reduced automatically (on a plateau);
3) the batch size was set at one; and 4) the patch size was
set at 150*150 pixels. Two patches were crafted for each
dataset (a total of four patches): 1) an adversarial patch
that misleads one-stage models, which was crafted using the
prediction and objectness scores of the YOLOv5X model;
and 2) an adversarial patch that misleads two/multi-stage
models, which was crafted using the prediction and object-
ness scores of the Faster R-CNN model. The reason for
crafting two patches for each dataset was due to the patches’
low transferability between one- and two/multi-stage mod-
els.

In addition, to validate that our adversarial patches cause
the model to misidentify objects and not just partially oc-
clude them, we performed additional experiments using a



Figure 3. Qualitataive assessment of the adversarial attacks. The patches succeeded in deceiving the type of model they were crafted to
deceive (left images) and failed when tested on other types of models, indicating the patches’ low transferability to different OD architecture
types.

random noise patch. The random noise patch was digi-
tally placed in the exact location of the original adversarial
patch to examine whether the model still misidentifies the
object. Most of the objects that were covered by a random
noise patch were located and correctly classified by all of
the models (as illustrated in Figure 2), i.e., the adversarial
patch attacks’ success was not the result of partial occlu-
sion.

Figure 3 presents images that were attacked by two of
our crafted patches and their predictions in both the digi-
tal and physical spaces along with their objectness saliency
maps. In each space (digital and physical) evaluated, the
left image presents the predictions and saliency map of the
model that uses the OD algorithm targeted by the adver-
sarial patch and the right image presents the prediction and
saliency map of a different OD algorithm (that was not tar-
geted by the adversarial patch). For example, the left im-
age presents the predictions of a one-stage model for an
image containing an adversarial patch crafted for the one-
stage models, and the right image presents the predictions
of a two-stage model for the same adversarial patch.

Our results presented in the paper indicate that during
successful adversarial attacks, the OD model’s attention is
predominantly drawn towards the patch (in one-stage mod-
els) or from it (in two/multi-stage models). This observa-
tion can be seen in the images on the left and their saliency
maps for each space evaluated. In contrast, in instances of
attack failure (the images on the right), the model’s inter-
pretation presented in the objectness saliency map appears
to be unaffected. This phenomenon could potentially indi-
cate the lack of adversarial transferability among different
OD algorithms.

Table 2 presents the success rate of the four patches on

one-, two-, and multi-stage models. The values presented
in the table indicate the percentage of successful adversarial
scenes, i.e., scenes where the patch causes the target model
to misidentify an object. These results further support the
adversarial patches’ lack of transferability.

4. Dataset Exploration
Figure 7 presents additional images from the various

datasets used in each evaluation use case and their corre-
sponding saliency maps. In this figure, the final outcomes
of our model (predictions) are presented alongside its per-
ception of the scene during the decision-making process
(the explanations derived from saliency maps). In the clean
cases (cases 1 and 6), there is notable alignment between the
predictions and explanations, however when an abnormality
is present (cases 2-5 and 7-9), a clear mismatch is observed.
The DiL metric depends on this mismatch to calculate the
model’s uncertainty in its decision-making process.

5. Experimental Results Additional Informa-
tion

5.1. XAI Technique Selection

Since DiL interprets the model’s internal perception, the
XAI technique selected can greatly influence the metric’s
final value. In this research, we chose to utilize saliency
map techniques as opposed to other XAI techniques, since
their characteristics are the most suitable for interpreting
OD models. Saliency maps are derived directly from the
activations or gradient of a chosen layer with respect to
the input image. This approach offers two primary ad-
vantages for our research: 1) computational efficiency –
saliency maps produce their output faster than other XAI



Target model COCO Random Noise Patch
COCO One-Stage

Patch
COCO Two/Multi-Stage

Patch
SuperStore One-Stage

Patch
SuperStore Two/Multi-Stage

Patch
One-Stage 28% 85% 66% 100% 16%
Two-Stage 20% 55% 85% 61% 72%
Multi-Stage 28% 57% 76% 72% 75%

Table 2. Adversarial attacks’ success rate against one-, two-, and multi-stage OD models; the gray cells indicate the datasets chosen for
evaluation.

methods (such as LIME and SHAP). Their reliance on ac-
tivations or gradients, which are computed through a sin-
gle forward and backward pass, ensures rapid calculations.
The saliency maps’ efficiency is especially crucial in our re-
search, where we evaluate OD models in real time in the in-
ference phase. 2) simplicity – saliency maps are considered
relatively straightforward and easy to understand. Unlike
other XAI techniques, saliency maps disregard feature in-
teractions which can lead to visually complex explanations.
Since one of our research goals is to visually represent a
model’s internal perception, the explanations’ clarity is es-
sential.

In our research, we evaluated four saliency map tech-
niques: GradCAM [33], GradCAM++ [1], EigenCAM [27],
and enhanced EigenGradCAM. GradCAM [33] and Grad-
CAM++ [1] rely on the model’s gradients, whereas Eigen-
CAM [27] relies on the model’s activations. The enhanced
EigenGradCAM technique relies both on the model’s gra-
dients and activations. Figure 4 presents the output of each
saliency map technique for images from the digital COCO
clean and physical SuperStore clean use cases. Since DiL
was inspired by the localization objective [20, 21], it re-
lies on a saliency map’s ability to discriminate between the
object and its background, i.e., the saliency map will have
higher values in pixels related to any object. Consequently,
saliency maps that are well-localized contribute to more
consistent DiL scores. On the other hand, saliency maps
that are either too dense (the focus is concentrated in the
center of the object) or too noisy (the focus extends beyond
the object’s boundaries) lead to inferior DiL scores. In Fig-
ure 4 it can be seen that the saliency maps derived from the
GradCAM technique appear to be the most localized; the
saliency maps derived from the GradCAM++ technique can
be perceived as noisy; and the saliency maps derived from
the EigenCAM and EigenGradCAM techniques can be per-
ceived as dense. Table 6 presents a comparison of the mean
DiL scores obtained using those four techniques. Each cell
in the table presents the mean DiL score for one-, two-, and
multi-stage models corresponding to a specific saliency map
technique. The results in the table show that the DiL scores
obtained with the GradCAM technique are the most effec-
tive in distinguishing between clean and abnormal scenes.
While all of the examined techniques yield high DiL scores
for abnormal scenes, GradCAM consistently produces the
lowest scores for clean scenes. More detailed Dil results

for each of the examined saliency map techniques are pre-
sented in Tables 7-10. Those results presented in the tables
are aligned with the findings presented in Figure 4. Since
the explanations obtained from the GradCAM technique are
notably localized, they effectively capture the model’s per-
ception in both clean and abnormal scenes.

5.2. Robustness Assessment of the Objectness
Saliency Map

Furthermore, we evaluated the robustness of the object-
ness saliency map used by DiL. When mapping the model’s
final outputs, saliency maps can be susceptible to minor
scene variations. However, our approach diverges by map-
ping the model’s objectness and not the final prediction.
This difference enhances the saliency map’s robustness to
changes in the input scene; only a drastic change will cause
the model to ”ignore” the indications for objects in the
scene, thus only substantial alterations in the objectness
scores will impact the outputted saliency map. To further
support this claim, we performed a sensitivity analysis of
the objectness saliency map when encountering noisy sam-
ples. We added uniform random noise on scales of 0.1 and
0.2 to 100 clean images and evaluated the changes in their
saliency maps. The changes were quantified by measuring
the MSE distance between the saliency maps produced for
each noisy and clean pair of samples. The results indicate
that the average MSE values were 0.008 and 0.017 with a
standard deviation of 0.083 and 0.11 for random noise of
0.1 and 0.2 respectively, indicating the objectness saliency
map robustness. Examples of the clean and noisy samples
with various noise levels used in this analysis can be seen in
Figure 5.

5.3. Label-Uncertainty Techniques Implementa-
tions and Quantitative Analysis

In the main manuscript, we argue that existing label-
uncertainty techniques are less effective when applied in
abnormal scenarios, as demonstrate in various output ex-
amples in Figure 3b. To perform this demonstration,
we implemented and evaluated three established label-
uncertainty techniques: Bayesian estimation [9], Monte
Carlo dropout [5], and Ensemble methods [18]. These im-
plementations were based on publicly available code and



Figure 4. Examples for saliency map techniques outputs on the clean COCO and clean Superstore datasets.

Figure 5. Examples of the clean and noisy samples with various noise levels used in the objectness saliency map sensitivity analysis.

models detailed in [10]1, enabling us to compare various
uncertainty techniques applied to the Faster R-CNN model.
We tested these techniques using our dataset of abnormal
use cases and assessed their effectiveness. Additionally, we
explored several newer techniques cited in [6,19,26,35,42].
However, the lack of available code implementations for
these methods hindered our ability to reproduce them re-
liably.

In this supplementary section, we extend the qualitative
experiment from the paper with a quantitative analysis to
further demonstrate the breadth of our findings. We applied
the three label-uncertainty techniques to a Faster R-CNN
model across various abnormal use cases in the digital do-
main, including unrealistic partial occlusion, realistic par-
tial occlusion, out-of-distribution objects, and adversarial
attack scenarios. Our objective is to demonstrate that ab-
normalities can effectively deceive the target object detec-

1https://github.com/asharakeh/probdet

tion model into missing objects, which occurs on an earlier
stage of the predicion process, before the uncertainty tech-
niques are employed. To quantify this, we use the misclas-
sification metric, which tracks the portion of scenes where
the object detection model failed to detect the targeted ob-
ject due to abnormalities. Table 3 compares the misclassi-
fication rates obtained from the base model and the three
uncertainty techniques across the abnormal use cases.

Although the usage of uncertainty techniques yields a
modest improvement in misclassification rates—indicative
of a reduction in errors—more than 50% of cases still result
in misclassification, underscoring the persistent challenges
these techniques face in effectively addressing abnormali-
ties. This finding supports our assumption that these tech-
niques, designed to assess label uncertainty and thus applied
at the final stages of the prediction process, are less effective
in abnormal scenarios. The impact of abnormalities occurs
at earlier stages of the model’s prediction process, prevent-
ing it from ’proposing’ objects to be processed by the un-



certainty technique

Model Unrealistic PO Realistic PO OOD Adversarial
Base model 0.89 0.93 0.83 0.85
Bayes-OD 0.93 0.93 0.77 0.61
Dropout 0.59 0.68 0.55 0.56
Ensemble 0.92 0.95 0.78 0.60

Table 3. Miscalssificaiotn rate of the Faster RCNN model in ab-
normal scenarios using various label-uncertainty technique.

5.4. Runtime Analysis

Since the DiL metric is used during inference, it should
be as efficient as possible. To calculate the DiL score for a
given input scene, one should obtain the input scene’s pre-
dictions and the saliency map of the model’s objectness.
Since the predictions for a scene are computed during in-
ference, DiL’s additional runtime overhead stems primarily
from generating the saliency map and the final DiL score’s
computation time. When employing a saliency map tech-
nique that only uses the model’s activations, the saliency
map is produced in parallel with the model’s predictions.
When employing a saliency map technique that uses the
gradients, the saliency map generation requires a single
backpropagation. In addition to the saliency map genera-
tion overhead (if any), there is a subsequent final DiL score
calculation consisting of basic mathematical operations on
the produced saliency map, which is computationally triv-
ial. Thus, the additional overhead for DiL score computa-
tion for a single scene is essentially one backpropagation (if
any), which is a relatively small addition to the total infer-
ence time.

5.5. Comparative Analysis of DiL in Unrealistic vs.
Realistic Partially Occluded Scenarios

Throughout the experiments establishing Table 2 in the
main manuscript, we observed consistent trends in the DiL
scores for the COCO PO use cases (2-3), with slight dif-
ferences - the mean DiL score of the unrealistic PO use
case was slightly higher than the realistic PO use case. This
may occur due to the varying levels of alienation from the
distribution of normal scenes. The distribution of scenes
used in the unrealistic PO use case is more alienated from
that of normal scenes due to their creation process - objects
are cropped and pasted onto different backgrounds, leading
to unnatural combinations like a ’pizza’ with a sky back-
ground. Conversely, the PO scenes in the realistic PO use
case were designed to simulate real-world scenes, resulting
in a closer resemblance to natural scenes.

5.6. Challenges in DiL’s Detection Capabilities

In our experiments, DiL effectively reflected abnormal-
ities in most cases but had limited success in a small frac-
tion of scenes. Those scenes reflected DiL’s limitation and

were characterized by a specific layout of objects in which
the object related to the abnormality was surrounded by
other objects, causing it to fall into other objects’ bound-
ing boxes. This occurs when an object is shaped in such
a way that it cannot fit within a bounding box without in-
cluding a large portion of the background. In those cases,
the BL does not consider the object related to the abnormal-
ity, since it is covered by other bounding boxes, resulting
in a lower DiL score than expected. An additional potential
limitation could be DiL’s effectiveness when concerning ex-
tremely small objects.

5.7. DiL Robustness Additional Results

The results presented in our paper show that the DiL
metric can be utilized to enhance the model’s performance
when faced with abnormal scenes, as described in Section
3.2. This enhancement is achieved by using a a dynamic
decision threshold (DDT) that changes based on the DiL
score, rather than using a fixed decision threshold. A higher
DiL score indicates that an abnormal scene has been pre-
sented and prompts a reduction in the detection threshold.
In our experiments on the DDT, we observed that lowering
the decision threshold improved the recall value for the ab-
normal scenes at a minor cost in the precision of the clean
scenes. Consequently, we selected the GradCAM++ tech-
nique, which consistently resulted in the highest DiL values.
Table 11 provides an extended analysis of DiL’s robustness
when using the DDT, as described in Section 5 of our pa-
per. The table presents the performance metrics for one-,
two-, and multi-stage models across all nine use cases. The
results presented in the table support our claim that the use
of DDT mitigates the abnormalities’ effect without harming
the model’s performance (FPR).

6. WACV revision additions
6.1. Applying DiL on Additional Object detection

Models

DiL calculation heavily relies on the object detection ob-
jectness score However, an alternative approach is neces-
sary for models like SSD, RetinaNet, or non-CNN architec-
tures such as DETR or ViT, which do not inherently pro-
duce objectness values as part of the prediction process. In
these instances, classification logits can effectively be used
to create saliency maps.

To explore the efficacy of this method, we conducted
an experiment using the classification logits from an SSD
model across the various use cases within the COCO dataset
(clean and abnormal). The findings, detailed in Table 4, il-
lustrate that while the DiL values tend to be higher in clean
scenarios, there is a noticeable distinction between the DiL
values obtained in the clean scenario compared to those
from abnormal scenarios. This variation highlights the util-



ity of classification logits in enhancing model interpretabil-
ity, particularly when objectness values are unavailable.

Clean Unrealistic PO Realistic PO OOD Adversarial
CL 0.26 0.34 0.30 0.41 0.33
BL 0.12 0.29 0.23 0.40 0.28
DiL 0.42 0.79 0.67 0.95 0.75

Table 4. Applying DiL on SSD model relying on class logistic
rather then objectness score.

6.2. Experimenting with Minimal Negative Sample
Filtering

DiL calculation heavily relies on the object detection ob-
jectness score. While YOLO, a one-stage model series, di-
rectly produces objectness scores during the prediction pro-
cess, two- and multi-stage models generate proposal can-
didates through the RPN. Typically, these models produce
more ”background” candidates than ”object” candidates,
which can distort the DiL scores. To address this imbal-
ance, we employed minimal negative sample filtering to
better balance these two groups. In our evaluation, we ex-
perimented with generating DiL scores from both the base
and the filtered proposals. The results presented in the pa-
per indicate that DiL scores based on the base proposals are
superior.

In this section, we elaborate on our filtering approach
and the qualitative results obtained. Our experiments in-
cluded two methods of filtering: hard filtering and weighted
filtering. Hard filtering employs a non-differentiable op-
eration using a threshold that blocks gradient flow. This
method resulted in blank saliency maps, as it does not allow
for gradient-based data propagation.

On the other hand, weighted filtering adjusts the impact
of each proposal based on its objectness score. While theo-
retically promising, weighted filtering presented challenges
in our tests. It tended to disproportionately emphasize cen-
tral regions of the image where objectness scores are usu-
ally higher. This characteristic of the weighted approach
proved problematic in scenarios involving adversarial at-
tacks. Such attacks typically involve strategically placed
patches at the center of objects, which artificially lower the
objectness scores in these central areas. Consequently, this
manipulation led to distorted DiL scores, suggesting that the
system might overestimate the certainty (and consequently
robustness) of the model in the face of adversarial inputs.
Figure 6 shows an example of saliency map outputs with
and without filtering.

6.3. DDT with smart degradation factor - Future
work

We believe that the degradation factor can be set in a
smart manner based on the evidence for an object present

Figure 6. Saliency map outputs with various filtering techniques.

in the background (a.k.a, ”undetected hot areas”). The fur-
ther away an ”undetected hot area” is from any recognized
bounding box, the less likely it is to be associated with that
detected object. Hence, this is evidence of a different object
from the detected one. Therefore, in scenarios where the
“undetected hot area” is near a detected object, a smaller
decrease in the threshold would be sufficient. (Since there is
less evidence of an undetected object) and vice versa. The
degradation factor can be computed by the distance from
“undetected hot areas” and existing bounding boxes. By
that, the degradation factor further enhances the effective-
ness of DDT.

6.4. Additional comparison of mAP and DiL

Table 5 presents the mean DiL score, mAP, normalized
mAP, and the decrease in mAP. The normalized mAP and
the decrease in mAP are calculated with respect to the mAP
in the clean use case. The first row (DiL mean) and the last
row (mAP norm. decrease) can be compared as they both
range between 0-1 and have the same expected behavior (in-
dicated by the arrows).

When comparing the two rows we can see that both DiL
and mAP are aligned featuring low scores in the clean use
cases and higher scores in abnormal use cases. However,
when examining the relations between the scores for differ-
ent abnormalities, DiL is more stable. The DiL scores of
OOD use cases are the highest, PO use cases are the lowest,
and adversarial use cases are in the middle. In contrast, the
mAP scores show different relations between abnormalities
between the COCO use cases and the Superstore use cases.
In the COCO use cases, the behavior of the mAP scores is
aligned with the DiL scores. However, in the Superstore
use cases, the adversarial use case has a higher score than
the OOD use case.

These phenomena show that the DiL scores are more sta-
ble as an uncertainty metric than mAP when the model is
faced with an abnormal scene.



Model Type Metric Use case
[1] Clean [2] Unrealistic PO [3] Realistic PO [4] OOD [5] Adv. [6] Clean [7] PO [8] OOD [9] Adv.

All types DiL mean 0.154 ↓ 0.54 ↑ 0.497 ↑ 0.911 ↑ 0.557 ↑ 0.09 ↓ 0.39 ↑ 0.73 ↑ 0.63 ↑
All types mAP 0.359 ↑ 0.23* ↓ 0.253 ↓ 0.0 ↓ 0.212 ↓ 0.9 ↑ 0.5 ↓ 0.5 ↓ 0.01 ↓
All types Normilized mAP 1.0 ↑ 0.64 ↓ 0.704 ↓ 0.0 ↓ 0.59 ↓ 1.0 ↑ 0.555 ↓ 0.555 ↓ 0.111 ↓
All types mAP norm. decrease 0.0 ↓ 0.35 ↑ 0.29 ↑ 1.0 ↑ 0.409 ↑ 0.0 ↓ 0.444 ↑ 0.444 ↑ 0.988 ↑

Table 5. Mean DiL scores and mAP for all types of OD models in the digital COCO (1-5) and physical Superstore use cases (6-9).

Digital COCO use cases Physical SuperStore use cases
Saliency map

technique Clean Unrealstic PO Realistic PO OOD Adv. Clean PO OOD Adv.

GradCAM 0.158 0.535 0.504 0.914 0.563 0.084 0.406 0.71 0.625
GradCAM++ 0.487 0.667 0.629 0.898 0.686 0.65 0.787 0.851 0.823
EigenCAM 0.312 0.584 0.536 0.89 0.765 0.657 0.742 0.83 0.757

EigenGradCAM 0.215 0.548 0.482 0.914 0.626 0.199 0.499 0.894 0.755

Table 6. Mean DiL scores for each saliency map technique for every use case. DiL scores obtained using the GradCAM technique are the
most productive at differentiating between clean and abnormal scenes.

Digital COCO use case Physical SuperStore use case
Target model

type Target model Metric Clean Unrealistic PO Realistic PO OOD Adv. Clean PO OOD Adv.

One-stage

YOLOv5
Complete localization 0.011 0.01 0.0047 0.002 0.012 0.017 0.004 0.018 0.02

Background localization 0.003 0.0043 0.0028 0.002 0.008 3E-04 0.002 0.01 0.008
DiL 0.228 0.43 0.5957 0.917 0.672 0.018 0.622 0.556 0.396

YOLOF
Complete localization 0.013 0.01 0.0049 0.004 0.018 0.017 0.014 0.021 0.021

Background localization 0.003 0.0056 0.003 0.004 0.009 3E-05 0.005 0.009 0.008
DiL 0.234 0.56 0.6122 0.951 0.497 0.002 0.379 0.414 0.367

YOLOv3
Complete localization 0.011 0.01 0.0046 0.004 0.018 0.017 0.014 0.02 0.021

Background localization 0.002 0.0042 0.0027 0.004 0.007 0.001 0.004 0.011 0.006
DiL 0.184 0.42 0.587 0.947 0.389 0.076 0.25 0.55 0.267

Two-stage

Faster R-CNN
Complete localization 0.116 0.155 0.15 0.089 0.069 0.039 0.025 0.061 0.014

Background localization 0.01 0.099 0.063 0.077 0.047 0.005 0.01 0.057 0.011
DiL 0.086 0.63871 0.42 0.87 0.681 0.128 0.4 0.934 0.786

Grid R-CNN
Complete localization 0.114 0.155 0.15 0.091 0.067 0.039 0.022 0.061 0.014

Background localization 0.017 0.091 0.075 0.083 0.042 0.004 0.01 0.044 0.011
DiL 0.149 0.5871 0.5 0.914 0.621 0.103 0.455 0.721 0.793

Double Heads R-CNN
Complete localization 0.114 0.155 0.149 0.088 0.068 0.037 0.02 0.061 0.014

Background localization 0.015 0.084 0.062 0.081 0.039 0.004 0.006 0.038 0.012
DiL 0.132 0.54194 0.4161 0.92 0.574 0.108 0.3 0.623 0.821

Multi-stage

Cascade R-CNN
Complete localization 0.114 0.1559 0.149 0.088 0.066 0.04 0.025 0.06 0.011

Background localization 0.016 0.095 0.072 0.081 0.035 0.005 0.01 0.058 0.008
DiL 0.14 0.60936 0.4832 0.918 0.527 0.127 0.4 0.967 0.752

Cascade RPN
Complete localization 0.114 0.1539 0.1496 0.086 0.066 0.04 0.023 0.06 0.008

Background localization 0.013 0.0762 0.062 0.075 0.036 0.006 0.009 0.055 0.007
DiL 0.11 0.49513 0.4144 0.872 0.545 0.139 0.391 0.917 0.821

All types All types Mean DiL 0.154 0.54 0.497 0.911 0.557 0.089 0.4 0.73 0.63

Table 7. DiL scores using GradCAM saliency map technique.



Figure 7. Various datasets used in each evaluation use case and their corresponding saliency maps.



Digital COCO use case Physical SuperStore use case
Target model

type Target model Metric Clean Unrealistic PO Realistic PO OOD Adv. Clean PO OOD Adv.

One-stage

YOLOv5
Complete localization 0.3 0.33 0.304 0.322 0.269 0.35 0.47 0.345 0.345

Background localization 0.194 0.23 0.235 0.275 0.227 0.27 0.44 0.289 0.302
DiL 0.634 0.699 0.79 0.85 0.855 0.77 0.93 0.826 0.858

YOLOF
Complete localization 0.3 0.333 0.3063 0.325 0.266 0.35 0.305 0.345 0.346

Background localization 0.18 0.242 0.2058 0.308 0.17 0.27 0.268 0.264 0.273
DiL 0.6 0.716 0.679 0.944 0.65 0.75 0.874 0.753 0.775

YOLOv3
Complete localization 0.299 0.334 0.3075 0.325 0.267 0.35 0.305 0.345 0.34

Background localization 0.16 0.198 0.185 0.288 0.156 0.28 0.259 0.282 0.29
DiL 0.56 0.587 0.619 0.879 0.577 0.77 0.851 0.806 0.83

Two-stage

Faster R-CNN
Complete localization 0.533 0.572 0.576 0.52 0.539 0.339 0.32 0.4 0.441

Background localization 0.201 0.415 0.336 0.446 0.42 0.2 0.245 0.38 0.39
DiL 0.389 0.726 0.584 0.858 0.792 0.607 0.77 0.95 0.9

Grid R-CNN
Complete localization 0.53 0.57 0.578 0.519 0.54 0.341 0.32 0.404 0.44

Background localization 0.23 0.38 0.366 0.48 0.37 0.198 0.226 0.317 0.34
DiL 0.45 0.67 0.637 0.919 0.71 0.59 0.71 0.79 0.79

Double Heads R-CNN
Complete localization 0.533 0.57 0.577 0.519 0.53 0.341 0.322 0.4 0.44

Background localization 0.216 0.37 0.322 0.476 0.34 0.176 0.218 0.31 0.35
DiL 0.41 0.64 0.562 0.915 0.65 0.56 0.68 0.77 0.8

Multi-stage

Cascade R-CNN
Complete localization 0.53 0.57 0.576 0.52 0.53 0.341 0.32 0.4 0.44

Background localization 0.238 0.4 0.349 0.484 0.34 0.19 0.241 0.397 0.36
DiL 0.454 0.7 0.607 0.92 0.646 0.55 0.75 0.98 0.82

Cascade RPN
Complete localization 0.535 0.57 0.578 0.519 0.57 0.341 0.322 0.4 0.442

Background localization 0.2 0.346 0.317 0.466 0.35 0.195 0.232 0.374 0.361
DiL 0.4 0.6 0.553 0.896 0.61 0.6 0.733 0.93 0.81

All types All types Mean DiL 0.487 0.66725 0.6289 0.898 0.686 0.65 0.787 0.851 0.823

Table 8. DiL scores using GradCAM++ saliency map technique.

Digital COCO use case Physical SuperStore use case
Target model

type Target model Metric Clean Unrealistic PO Realistic PO OOD Adv. Clean PO OOD Adv.

One-stage

YOLOv5
Complete localization 0.035 0.041 0.0291 0.027 0.058 0.033 0.027 0.036 0.036

Background localization 0.012 0.023 0.0195 0.022 0.048 0.009 0.011 0.022 0.019
DiL 0.342 0.56098 0.6701 0.806 0.825 0.273 0.401 0.6 0.534

YOLOF
Complete localization 0.035 0.04 0.0291 0.027 0.058 0.033 0.029 0.037 0.035

Background localization 0.011 0.025 0.017 0.025 0.055 0.008 0.01 0.022 0.017
DiL 0.322 0.625 0.58419 0.925 0.953 0.248 0.353 0.601 0.484

YOLOv3
Complete localization 0.035 0.0417 0.0291 0.027 0.059 0.033 0.029 0.036 0.037

Background localization 0.01 0.019 0.0147 0.023 0.038 0.011 0.013 0.026 0.017
DiL 0.286 0.45564 0.50515 0.852 0.643 0.333 0.443 0.714 0.457

Two-stage

Faster R-CNN
Complete localization 0.251 0.246 0.255 0.265 0.237 0.322 0.318 0.322 0.209

Background localization 0.067 0.163 0.1248 0.234 0.202 0.286 0.306 0.319 0.204
DiL 0.267 0.6626 0.48941 0.883 0.852 0.888 0.962 0.991 0.975

Grid R-CNN
Complete localization 0.251 0.246 0.256 0.265 0.236 0.322 0.318 0.322 0.209

Background localization 0.085 0.153 0.144 0.242 0.178 0.285 0.298 0.287 0.184
DiL 0.339 0.62195 0.5625 0.913 0.754 0.885 0.937 0.891 0.879

Double Heads R-CNN
Complete localization 0.251 0.246 0.252 0.264 0.238 0.322 0.318 0.322 0.209

Background localization 0.077 0.141 0.119 0.241 0.171 0.279 0.298 0.282 0.187
DiL 0.307 0.57317 0.47222 0.913 0.718 0.866 0.937 0.876 0.895

Multi-stage

Cascade R-CNN
Complete localization 0.251 0.246 0.253 0.266 0.238 0.322 0.318 0.322 0.209

Background localization 0.09 0.157 0.134 0.25 0.178 0.282 0.303 0.32 0.195
DiL 0.359 0.63821 0.52964 0.94 0.748 0.876 0.953 0.994 0.933

Cascade RPN
Complete localization 0.251 0.246 0.2557 0.265 0.237 0.322 0.319 0.322 0.209

Background localization 0.07 0.131 0.121 0.236 0.149 0.286 0.302 0.313 0.189
DiL 0.279 0.53252 0.47321 0.891 0.629 0.889 0.948 0.972 0.903

All types All types Mean DiL 0.312 0.58376 0.5358 0.89 0.765 0.657 0.742 0.83 0.757

Table 9. DiL scores using EigenCAM saliency map technique.



Digital COCO use case Physical SuperStore use case
Target model

type Target model Metric Clean Unrealistic PO Realistic PO OOD Adv. Clean PO OOD Adv.

One-stage

YOLOv5
Complete localization 0.016 0.005 0.004 0.017 0.011 0.002 0.002 0.001 0.003

Background localization 0.006 0.003 0.002 0.015 0.009 9E-04 0.001 0.001 0.002
DiL 0.35 0.547 0.653 0.875 0.772 0.45 0.722 0.979 0.84

YOLOF
Complete localization 0.016 0.005 0.004 0.014 0.011 0.002 0.001 0.001 0.003

Background localization 0.006 0.003 0.002 0.013 0.011 8E-04 0.001 0.001 0.002
DiL 0.374 0.631 0.525 0.963 0.947 0.4 0.929 0.966 0.84

YOLOv3
Complete localization 0.016 0.006 0.004 0.015 0.012 0.002 0.002 0.001 0.003

Background localization 0.005 0.003 0.002 0.014 0.006 9E-04 0.001 0.001 0.002
DiL 0.307 0.455 0.493 0.945 0.543 0.45 0.813 0.986 0.84

Two-stage

Faster R-CNN
Complete localization 0.011 0.011 0.014 0.014 0.012 0.01 0.01 0.012 0.032

Background localization 0.001 0.007 0.006 0.012 0.008 8E-04 0.003 0.011 0.024
DiL 0.091 0.627 0.396 0.876 0.672 0.082 0.309 0.948 0.75

Grid R-CNN
Complete localization 0.011 0.012 0.015 0.014 0.012 0.01 0.01 0.012 0.049

Background localization 0.002 0.007 0.007 0.013 0.007 7E-04 0.004 0.009 0.034
DiL 0.177 0.556 0.486 0.906 0.565 0.067 0.354 0.737 0.688

Double Heads R-CNN
Complete localization 0.011 0.012 0.014 0.013 0.011 0.01 0.01 0.012 0.048

Background localization 0.002 0.006 0.006 0.012 0.006 1E-04 0.002 0.008 0.034
DiL 0.15 0.513 0.419 0.925 0.504 0.01 0.227 0.661 0.701

Multi-stage

Cascade R-CNN
Complete localization 0.011 0.011 0.015 0.014 0.011 0.01 0.01 0.012 0.039

Background localization 0.002 0.007 0.007 0.013 0.006 6E-04 0.003 0.011 0.026
DiL 0.171 0.575 0.472 0.942 0.524 0.061 0.333 0.974 0.664

Cascade RPN
Complete localization 0.011 0.012 0.015 0.014 0.012 0.01 0.01 0.012 0.044

Background localization 0.001 0.006 0.006 0.012 0.006 7E-04 0.003 0.011 0.031
DiL 0.099 0.478 0.413 0.884 0.478 0.076 0.303 0.897 0.715

All types All types Mean DiL 0.215 0.548 0.482 0.914 0.626 0.199 0.499 0.894 0.755

Table 10. DiL scores using EigenGradCAM saliency map technique.

Target model Metric Use case and abnormality
[1] Clean [2] Unrealistic PO [3] Realistic PO [4] OOD [5] Adv. [6] Clean [7] PO [8] OOD [9] Adv.

One-stage

Base recall 0.594 0.51 0.463 0.275 0.439 0.94 0.563 0.25 0.676
With DDT 0.659 (+10%) 0.698 (+36%) 0.629 (+35%) 0.4 (+45%) 0.51 (+16%) 0.94 (0%) 0.575 (+2%) 0.68 (+270%) 0.7 (+3%)

TP improvement 12% 28% 25% 16% 13% 0% 12% 7% 9%
FPR 4% 6% 2% 15% 4% 1% 0.3% 8% 3%

Two-stage

Base recall 0.66 0.517 0.469 0.26 0.49 0.95 0.646 0.23 0.6
With DDT 0.69 (+4%) 0.76 (+47%) 0.625 (+33%) 0.36 (+38%) 0.6 (+22%) 0.95 (0%) 0.7 (+8%) 0.44 (+91%) 0.715 (+19%)

TP improvement 8% 52% 29% 13% 21% 0% 31% 26% 24%
FPR 4.2% 8% 4% 30% 5% 1% 0.7% 2% 5%

Multi-stage

Base recall 0.625 0.505 0.484 0.19 0.525 0.835 0.537 0 0.56
With DDT 0.665 (+6%) 0.68 (+36%) 0.593 (+22%) 0.32 (+68%) 0.605 (+15%) 0.845 (1%) 0.591 (+10%) 0.17 (+%) 0.6 (+7%)

TP improvement 3% 35% 21% 15% 3% 12% 17% 7% 9%
FPR 3% 4% 1% 25% 4% 0.5% 0.3% 0% 0.4%

Table 11. Original and DDT performance for all OD models’ types and all use cases.
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