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Table 1. Ablation studies on various design approaches for the 24-
layer CP-DeiT. Except for the baseline model, the size of the initial
embedding dimension is uniformly set to 288.

Methods RC Heads # param. (M) Top-1 Acc. (%)

DeiT-S24 [9] - 6 43.3 77.4
(a) 8 4 47.4 77.3
(b) 12 4 45.3 77.8
(c) 16 4 46.2 79.3

Table 2. Performance on the ImageNet-1k with 100 epoch training.

Methods #Param (M) FLOPs (G) Throughput (img / s) Top-1 Acc.

Swin-T 28.3 4.5 871.4 77.6
CP-Swin-T 20.1 4.2 924.1 78.1

1. Further Ablation Study
Deeper Vision Transformer. The evaluation of the pro-
posed Channel Propagation method is performed by vari-
ous design approaches. Fig. 1 illustrates various design ap-
proaches for the ViT model, where each block incorporates
MHSA and FFN operations. Tab. 1 shows the performance
of the architectural designs of Fig. 1.

Comparable computational budget. Tab. 7 in the
manuscript shows that the lightweight CP modules achieve
better performance while reducing the computational cost.
Furthermore, we redesign the competitive CP-Swin-T by
tuning hyperparameters. As shown in Tab. 2, CP-Swin-T
achieves lower FLOPs and faster inference speed than the
baseline while maintaining higher performance.

Refreshable Channel Dimension. We perform the ab-
lation study to compare the performance of the refresh-
able channels dimension and the initial embedding chan-
nel dimension of a network. Tab. 3 shows that our Chan-
nel Propagation consistently outperforms the baseline, and

*Corresponding author.

Table 3. Ablation studies on the dimensionality of Refreshable
Channels(RC). The number of heads is set proportionally to the
channel dimension. We utilize Swin-S [5] as the baseline network
with 100 epoch training setup.

Init dim. RC Heads
#Param.

(M)
Top-1
(%)

throughput
(image / s)

96 0 {3, 6, 12, 24} 49 81.0 524
128 16 {4, 4, 8, 16} 37 81.5 482
100 20 {4, 4, 10, 20} 43 81.7 453
72 24 {4, 6, 8, 24} 51 81.9 449

Table 4. Experimental results on the CIFAR-100 with 300 epochs.

Methods #Param (M) FLOPs (G) Top-1 Acc.

ConvNeXt-T [6] 28.6 1.1 79.2±0.19
ConvNeXt-S [6] 50.2 2.2 80.1±0.09
CP-ConvNeXt-T 27.5 1.7 81.2±0.22
CP-ConvNeXt-S 53.2 3.0 82.0±0.25

even with smaller initial channel sizes, larger refreshable
channels lead to greater performance improvement.

Channel propagation in modern CNN. We evaluate
the performance of CP-ConvNeXt on the CIFAR-100. As
shown in Tab 4, our CP improves the performance of the
ConvNeXt. The experiments are conducted three times us-
ing different seeds. Also, we perform spatial entropy and
frequency analysis on CNNs. As shown in Fig. 2, unlike
ViTs, CNNs do not present feature redundancy. The reason
behind this is the hierarchical structure of CNN, which leads
to an incremental increase in the receptive field through
convolution operations [8].

Efficiency of Channel Propagation. We compare ours
with baseline networks without the CP. We only remove the
CP from our CP-DeiT-S while keeping all others the same.
Tab. 5 shows that our CP w/ concat significantly improves
the performance with manageable additional resources. We
also compare our concat method with a skip connection
(residual operation). We replace the concat operation in
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Figure 1. Three architectural designs. (a): Channel Propagation only, (b): Sequential, and (c): Crossover design.
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Figure 2. Entropy and frequency analysis on CNNs. We compare
them using ViT, ResNet, and ConvNeXt.
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Figure 3. Fourier frequency analysis on the latest networks.

Table 5. Results for CP efficiency on CP-DeiT-S networks.

Methods #Param FLOPs Top-1 Acc. Throughput

Baseline w/o CP 23.4 4.8 76.6 1160
CP w/ skip-conn. 23.7 5.9 81.8 1034
CP w/ concat 24.6 6.1 82.5 1015

Eq.5 with the skip connection in the CP block. Therefore,
instead of incrementally increasing the channel dimension
from 288 to 480 with the concat, we use skip-connection
with the CP block in a network with fixed 384 channel di-
mensions. Tab. 5 shows our CP-DeiT-S with concat per-
forms better than CP-DeiT-S with the skip-connection.

Further Frequency Analysis. We perform frequency
analysis on more models. As shown in Fig. 3, both hier-
archical models, Swin-S [5] and ConvNeXt-S [6], learn di-
verse frequency levels. Despite being based on a plain ViT,
the proposed Channel Propagation method can capture a
wide range of frequency levels as the hierarchical models.
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Figure 4. Analysis of the Left) Entropy, Right) Frequency. Except
for our CP-ViT, all ViT networks do not show diversified entropy
and frequency levels for different layers of each network.

Feature similarity in deeper ViT. The model’s high
feature similarity poses a challenge in capturing the dis-
tinct features of different tokens during training, which ul-
timately reduces the network’s capacity. We perform exper-
iments on ViTs with depths of 12, 24, 36, and 48 layers,
where we analyze feature map entropy and frequency. As
depicted in Fig. 4, deeper networks tend to capture similar
features more often, which aligns with a decrease in per-
formance as shown in Tab. 6. We utilize the training recipe
from CaiT [10] to implement different drop path ratios for
each depth.

Skip connection in U-Net. The skip connection in U-
Net helps bridge the gap between the encoder and decoder,
allowing for the recovery of detailed information. While
Channel Propagation tackles redundancy by fusing infor-
mation between adjacent layers, U-Net still encounters re-
dundancy problems as it mainly binds distant features be-
tween the encoder and decoder [4].

2. Details of the analysis.

We follow [8] for the frequency analysis, where we use
the feature maps in the 2D frequency domain using the Dis-
crete Fourier Transform. For ViT, we make use of the out-
put from the MHSA and FFN layers. On the other hand,
with CNNs, we rely on the output from the convolutional
blocks. Initially, the magnitude of the feature map frequency
is extracted, and then log scaling is applied. The frequency



Table 6. Performance comparison of deeper networks on the
ImageNet-1K dataset.

Methods #Param (M) FLOPs (G) Top-1 Acc. (%)

ViT-S/12 22 4.6 79.8
ViT-S/24 43 9.2 80.2
ViT-S/36 65 13.7 79.8
ViT-S/48 86 18.3 76.9

Table 7. Architecture configuration of CP-Swin-T. The size of the
refreshable channel is configured by 30 in this configuration.

Spatial size Channel size # Heads

Stage-1 56× 56
100 → 130 4
130 → 160

Stage-2 28× 28
160 → 190 4
190 → 220

Stage-3 14× 14

220 → 250

5

250 → 280
280 → 310
310 → 340
340 → 370
370 → 400

Stage-4 7× 7
400 → 430 10
430 → 460

features are divided into lowest- and highest-frequency ele-
ments. We compute the difference in logarithmic amplitude
of the two elements.The analysis presents the mean values
obtained from 32 images.

3. Architectural Design Choice
We illustrate the specific design choices for CP-Swin-T

in Tab. 7. For the design of CP-Swin-T, we employ a refre-
shable channel of size 30. In other words, a layer-specific
new channel is added for each depth. The channel size rep-
resents the size of the input and output channels. Specifi-
cally, the arrow on the left indicates the size of the input
channel, while the arrow on the right indicates the output
channel size. The number of heads is adopted based on the
results regarding the channel size.

4. Hyperparameter details
We provide the details of the hyperparameters used in

our experiments as shown in Tab. 8.
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