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1. Additional Results
1.1. Translation and Rotation Errors

In Section 4.2 of the manuscript, we evaluated Flash-
Mix against the leading LiDAR pose regression methods
of HypLiLoc [3], NIDALoc [6], and PosePN++ [7]. Now
we show results from additional methods like PosePN, Pos-
eSOE, PoseMinkLoc [7], and PointLoc [4] for the Oxford-
Radar and vReLoc datasets in Tables A and B, respec-
tively. Results from retrieval-based methods such as Point-
NetVLAD [2] and DCP [5] are also presented for the
Oxford-Radar dataset to provide a broader performance
context. FlashMix demonstrates the lowest translation er-
rors on the Oxford-Radar dataset and exhibits competitive
performance on the vReLoc dataset, all while requiring sig-
nificantly less training time.

1.2. Contrastive Regularization

In the manuscript, we demonstrated how integrating
contrastive regularization enhances FlashMix’s efficacy.
Specifically, we assessed FlashMix’s performance with
the inclusion of the contrastive regularization losses of
SigLIP [9], NTXent [1], and Barlow Twins [8], alongside
the metric-based Triplet Loss. Here, we provide more de-
tails into these losses.

SigLIP is a contrastive loss defined as:
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where lqi is the query instance at index i in the batch, lpj is the
positive to the query instance at index j, respectively, |B|
represents the batch size, zij = 1 when i = j and zij = −1
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when i ̸= j. The parameters t (temperature) and b (bias)
govern the loss scaling and offset, respectively. Following
common practice [9], the temperature t is parameterized as
exp (t̄), with t̄ being a trainable parameter initially set to
log 1

0.07 , and the trainable bias b starting at 0.
For query lqi and its positive lpi , the NTXent (Normalized

Temperature-Scaled Cross-Entropy) Loss [1] is defined as
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where 1[k ̸=i] is the indicator function, which is 1 if k ̸= i,
and 0 otherwise. The function sim(lqi , l

p
i ) calculates the co-

sine similarity between vectors lqi and lpi , and τ is a temper-
ature parameter set to 0.07.

The Barlow Twins contrastive loss, with hyperparameter
µ (0.005), is formulated as:
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where C is the cross-correlation matrix between the de-
scriptors of queries and positives in a batch, and given by
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where lqa,i and lpa,i are the values at index a of the projected
embeddings of the query (lqi ) and its positive counterpart
(lpi ), respectively.

For each set of query lqi , positive lpi , and negative lni , the
triplet margin loss is defined as:

LTripletLoss = max
{
∥lqi − lpi ∥

2
2 − ∥lqi − lni ∥22 +m, 0

}
(6)

where the margin m is set to 0.05.
The relocalization success rate comparison while using

contrastive and metric loss regularization is shown in Ta-
ble C (Table 4 of the manuscript). Not using any regular-
ization loss resulted in the poorest performance. Among
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Method Training Time Full6 Full7 Full8 Full9 Average
PNVLAD - 18.14, 3.28 24.57, 3.08 19.93, 3.13 15.59, 2.63 19.56, 3.03
DCP - 16.04, 4.54 16.22, 3.56 14.87, 3.45 12.97, 3.99 15.03, 3.89
PosePN - 14.32, 3.06 16.97, 2.49 13.48, 2.60 9.14, 1.78 13.48, 2.48
PoseSOE - 7.59, 1.94 10.39, 2.08 9.21, 2.12 7.27, 1.87 8.62, 2.00
PoseMinkLoc - 11.20, 2.62 14.24, 2.42 12.35, 2.46 10.06, 2.15 11.96, 2.41
PointLoc - 12.42, 2.26 13.14, 2.50 12.91, 1.92 11.31, 1.98 12.45, 2.17
PosePN++ 590 minutes 9.59, 1.92 10.66, 1.92 9.01, 1.51 8.44, 1.71 9.43, 1.77
NIDALoc 1200 minutes 6.71, 1.33 5.45, 1.40 6.68, 1.26 4.80, 1.18 5.91, 1.29
HypLiLoc 1020 minutes 6.00, 1.31 6.88, 1.09 5.82, 0.97 3.45, 0.84 5.54, 1.05
Flash-Mix (M.L. Reg.) 80 minutes 3.153, 2.002 4.066, 1.882 4.611, 2.536 3.68, 1.791 3.878, 2.053
Flash-Mix (C.L. Reg.) 80 minutes 3.048, 1.959 4.551, 2.049 4.674, 2.052 2.943, 1.791 3.804, 1.963

Table A. Mean position (m) and orientation errors (◦) on Oxford-Radar Dataset. Best performance is highlighted in bold, lower is better.

Methods Training Time Average
PosePN 40 minutes 0.12, 3.69
PoseSOE - 0.13, 3,08
PoseMinkLoc - 0.15, 4.57
PointLoc - 0.12, 3.07
PosePN++ 22 minutes 0.13, 3.04
NIDALoc 38 minutes 0.18, 3.74
HypLiLoc 13 minutes 0.10, 2.50
Flash-Mix (ML Reg.) 5 minutes 0.14, 3.34
Flash-Mix (CL Reg.) 5 minutes 0.14, 3.42

Table B. Average of the Median position (m) and orientation er-
rors (◦) on vReLoc sequences. Best performance is highlighted in
bold, lower is better.

the contrastive loss methods, NTXent achieved the high-
est average relocalization rate at 85.92%, closely followed
by Barlow Twins with a rate of 85.74%. Meanwhile, the
metric-learning-based Triplet Loss posted a rate of 85.69%.

While NTXent demonstrates higher performance, its
computational cost scales quadratically with the batch size,
posing significant efficiency challenges. In contrast, the
computational cost for Barlow Twins scales linearly, which
substantially reduces training times. Consequently, to opti-
mize the balance between performance and computational
efficiency, we integrated Barlow Twins Contrastive regular-
ization into FlashMix. Additionally, we developed a variant
of FlashMix utilizing Triplet Loss regularization, thereby
offering two distinct configurations tailored to different op-
erational needs.

1.3. Descriptor Aggregator

Section 4.4 of the manuscript explores various descrip-
tor aggregation techniques, including MLP+Global Aver-
age Pooling (GAP), Multi-headed Attention (MHA)+GAP,
Mixer+SALAD, and Mixer+GAP. Below, we detail each
method used in our ablation studies:

F6 F7 F8 F9 Avg.
No Reg. Loss 88.92 78.15 76.32 89.72 82.77
SigLIP 88.14 81.01 79.43 90.87 84.48
NTXent 88.63 82.29 81.58 92.56 85.92
Triplet 91.95 82.13 78.80 91.80 85.69
Barlow Twins 91.82 81.56 80.42 90.92 85.74

Table C. Ablation Study: Impact of Contrastive and Metric Loss
regularization. The best and second best performances are high-
lighted in bold and underline, respectively.

MLP+GAP: This approach utilizes a Multilayer Percep-
tron (MLP) that features a linear layer followed by a ReLU
nonlinearity. The point descriptors are projected to the
global descriptor dimension and subsequently processed via
Global Average Pooling to yield a singular global descriptor
for each point cloud.
MHA+GAP: This method employs a transformer archi-
tecture with multi-headed attention, followed by GAP, for
descriptor aggregation. The transformer configuration in-
cludes four attention heads, facilitating intricate interactions
among point descriptors within each point cloud.
Mixer+SALAD: The Sinkhorn Algorithm for Locally
Aggregated Descriptors (SALAD) technique refines the
NetVLAD framework for feature-to-cluster assignment us-
ing an optimal transport mechanism. SALAD processes
point features through the optimal transport block and in-
tegrates the output with a global token to construct ro-
bust global descriptors. Although this configuration demon-
strated higher performance with Barlow Twins loss in Table
6 of our manuscript, its computational intensity restricted
batch sizes to smaller numbers, consequently extending
training times.
Mixer+GAP: This setup, which is the standard across all
our experiments as discussed in Section 3.3.1, combines a
Mixer with GAP to form the descriptor aggregator.
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