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1. Datasets Details

Table 1 presents the following details for each dataset:
i) the number of the training, validation and test samples;
ii) the number of state and object classes; iii) the valid and
iv) the total object-state combinations and v) the average
number of states in which an object can be situated.

2. Evaluation of the CW and OW versions

The results for the Open World (OW) and Closed World
(CW) versions of the models are shown in Table 2 and Ta-
ble 3, respectively. For the OW settings our method con-
tinues to outperform the competing methods, although the
performance gain has predictably been decreased. More-
over, w.r.t OSDD dataset, the 2nd best method is IVR [14],
whereas CANET [12] is the 3rd best method. In the case
of the CGQA-States dataset, the 2nd and 3rd best method is
IVR [14] and CANET [12], respectively. Concerning the
MIT-States dataset the 2nd best method is the IVR [14],
whereas KG-SP [4] exhibits the 3rd best AUC score and
CANET [12] the 3rd best HM score. Finally, in the case of
the VAW dataset, the 2nd best performance is achieved by
CANET [12], while IVR [14] ranks 3rd.

Regarding the CW settings, our method ranks 1st for
the OSDD, VAW and MIT-states datasets and 4th for
the CGQA-states dataset. Regarding the OSDD dataset,
IVR [14] exhibits the 2nd best performance and KG-SP [4]
the 3rd best performance. In the case of MIT-States
dataset, CompCos [7] achieves the 2nd best performance
and ADE [2] the 3rd best performance. Concerning the
CGQA-states dataset, the best performance is achieved by
CANET [12], the 2nd best by CompCos [7] and the 3rd
best by OADiS [13]. Finally, regarding VAW, the 2nd best
method is ADE [2] and the 3rd best method is CANET [12].

3. Additional Results of the Ablation Study
Table 4 outlines the details of the employed KGs, while

Table 5 summarizes the performance of all ablated models
across the four datasets.
1st Sub-table (GNN Architectures): The Tr-GCN-based
model CN+WN H2 TH GCN demonstrates the best over-
all performance.
2nd Sub-table (KGs): The ConceptNet-based model
CN H2 TH Tr-GCN achieves the highest scores.
3rd Sub-table (Hops): Most models achieve their best per-
formance with two hops.
4th Sub-table (Node Policy): Adopting a node policy
slightly improves the performance of most models.

Notably, while CN H2 TH Tr-GCN achieves the best
scores on two of the three datasets, CN+WN H2 TH GCN
was selected for comparison with competing methods, as
this selection was based on aggregate averages across all
four categories.

In seen classes, the model using unrelated embed-
dings (CN H3 UN Tr-GCN) achieves similar accuracy to
its counterpart with standard embeddings (CN H3 Tr-
GCN). However, CN H3 UN Tr-GCN performs signifi-
cantly worse in unseen classes, with its HM and AUC scores
being three to four times lower than those of CN H3 Tr-
GCN. In contrast, the random model performs poorly across
all metrics.

The key distinction between CN H3 UN Tr-GCN and
the random model lies in their embedding distributions: in
the former, the GNN enables a balanced and representative
distribution, while in the latter, the distribution is entirely
random. This suggests that fine-tuning can yield compet-
itive accuracy for seen classes even when embeddings are
unrelated to target labels, provided they are distributed ef-
fectively. However, for unseen classes, accuracy depends on
a precise mapping between embeddings and target labels.



Dataset Train Val Test States Objects VOSC TOSC S\O
OSDD [1] 6,977 1,124 5,275 9 14 35 126 2.36
CGQA-states [7] 244 46 806 5 17 41 75 1.71
MIT-states [3] 170 34 274 5 14 20 70 1.57
VAW [10] 2,752 516 1,584 9 23 51 207 2.61

Table 1. Details about the four image datasets utilized in this work. Train/Val/Test: Number of Training/Validation/Testing Images. States:
Number of State classes, Objects: Number of Object classes. VOSC/TOSC: Valid/Total Object-State combinations. S\O: Average number
of states than an Object can be situated in.

Method OSDD CGQA-States MIT-States VAW
S Un HM AUC S Un HM AUC S Un HM AUC S Un HM AUC

AoP [9] 69.9 33.3 31.6 13.3 14.5 4.3 4.4 0.3 36.4 4.8 8.4 1.3 59.6 5.4 6.1 1.3
LE+ [8] 71.6 14.3 20.8 6.5 29.1 4.0 7.0 0.6 45.5 14.9 15.1 4.3 23.7 12.3 13.7 0.4
TMN [11] 73.4 43.6 33.7 19.0 45.5 29.7 19.3 6.1 69.7 18.4 22.4 6.3 77.6 35.5 26.8 14.3
SymNet [6] 77.7 14.0 21.1 7.5 94.0 7.1 13.7 6.1 97.0 1.9 2.1 0.9 82.2 3.1 3.5 1.2
CompCos [7] 78.7 31.5 42.0 22.1 95.5 4.0 7.7 3.4 75.8 2.5 4.9 1.2 75.8 2.5 4.9 1.2
KG-SP [4] 77.0 29.8 35.4 17.9 94.0 16.9 26.1 12.7 97.0 15.5 22.6 12.0 74.3 12.3 17.6 8.6
SCEN-NET [5] 75.8 25.5 26.3 10.7 83.6 7.4 13.6 5.9 36.4 8.5 13.0 1.6 22.0 12.0 11.1 2.5
IVR [14] 78.8 61.6 44.2 30.8 94.0 40.3 37.4 26.4 96.9 22.5 24.5 14.9 87.2 37.4 29.7 18.2
OADiS [13] 76.5 20.5 27.1 10.7 94.8 26.3 20.3 12.0 93.9 29.1 23.4 12.5 82.8 8.9 11.0 4.2
CANET [12] 79.2 43.9 43.7 27.2 95.5 51.3 41.9 26.1 96.9 19.3 22.7 11.4 90.1 53.9 40.4 29.7
ADE [2] 80.2 27.6 32.3 12.3 95.5 16.3 25.7 12.8 78.8 4.5 4.7 0.8 80.8 22.3 14.3 8.4
OaSC (Ours) 87.7 69.9 48.6 39.8 97.1 73.4 43.6 36.5 85.7 69.9 51.1 41.2 83.7 58.6 42.9 32.8

Table 2. Aggregate results for Open World Versions. S: Best Accuracy on seen classes. UN: Best accuracy on unseen classes. HM: Best harmonic mean.
AUC: Area under curve for the pairs of accuracy for seen and unseen classes. Red/Bold/Underlined text indicates best/2nd best/3rd best performance.

Method OSDD CGQA-States MIT-States VAW
S UN HM AUC S UN HM AUC S UN HM AUC S UN HM AUC

AoP [9] 75.9 53.5 32.2 19.5 95.5 50.0 35.9 27.8 48.5 20.9 15.1 4.1 55.1 44.7 24.1 11.6
LE+ [8] 68.6 31.7 34.5 16.9 93.5 16.1 16.1 8.1 63.6 14.6 20.3 7.1 41.6 2.3 2.6 1.2
TMN [11] 71.5 49.8 35.0 20.8 97.0 76.0 39.9 32.2 84.9 30.7 27.4 16.1 82.6 55.5 37.3 25.6
SymNet [6] 77.7 59.4 44.2 31.0 95.5 27.4 39.4 24.4 96.9 27.5 26.8 15.7 89.2 46.6 40.0 27.4
Compcos [7] 76.3 45.3 38.7 23.8 92.5 73.9 48.1 41.5 100.0 44.9 32.3 23.8 88.4 51.4 39.3 29.1
KG-SP [4] 78.0 55.0 47.6 29.7 95.5 17.7 27.2 13.5 97.1 15.5 22.6 12.0 89.4 37.3 39.3 23.4
SCEN-NET [5] 75.1 45.6 39.4 22.7 94.1 53.4 41.1 31.0 84.9 23.1 22.1 11.5 90.5 44.2 37.7 23.5
IVR [14] 78.4 60.5 46.0 31.8 94.0 43.4 35.2 25.2 87.9 28.8 27.1 14.0 86.7 38.2 30.5 18.5
OADiS [13] 78.7 59.7 38.3 26.2 95.5 78.6 43.5 36.7 93.9 29.4 28.3 17.2 89.9 61.8 39.8 30.5
CANET [12] 80.3 43.6 45.1 27.9 95.5 64.9 50.0 43.3 96.9 23.0 28.2 15.9 90.3 54.6 40.8 30.5
ADE [2] 82.0 42.5 35.9 20.6 94.8 58.3 45.5 34.9 93.9 27.5 30.4 19.2 90.7 45.0 40.9 30.6
OaSC (Ours) 87.7 69.9 48.6 39.8 97.1 73.4 43.6 36.5 85.7 69.9 51.1 41.2 83.7 58.6 42.9 32.8

Table 3. Aggregate results for Closed World Versions. S: Best Accuracy on seen classes. UN: Best accuracy on unseen classes. HM: Best harmonic mean.
AUC: Area under curve for the pairs of accuracy for seen and unseen classes. Red/Bold/Underlined text indicates best/2nd best/3rd best performance.



KG N E RT RC
WN H2 70 / 54 / 49 / 79 321 / 223 / 105 / 365 5 LX
WN H3 429 / 311 / 295 / 465 873 / 680 / 655 / 912 5 LX
CN H2 715 / 552 / 504 / 743 / 2,132 / 1,981 / 1,864 / 2,342 13 CS
CN H3 2,139 / 1,872 / 1,788 /2,349 / 2,542 / 2,194 / 2,103 / 2,874 24 CS
CN H2 TH 611 / 505 / 485 / 785 1,710 / 1,521 / 1,415 / 1,956 12 CS
CN H3 TH 12,733 / 9,839 / 9,212 / 13,045 29,794 / 25,105 / 24,292 / 32,456 29 CS
CN+WN H2 667 / 581 / 506 / 845 1,906 / 1,682 / 1,602 / 2,136 13 CS
CN+WN H2 TH 590 / 492 / 431 / 705 1,442 / 1,167 / 1,089 / 1,673 12 CS/LX
CN+WN H3 TH 10,165 / 8,842 / 7,948 / 12,116 26,735 / 23,176 / 22,602 / 29,672 29 CS/LX

Table 4. KGs Details. N: Number of Nodes. E: Number of Edges. RT: Number of Different Relation Types between nodes. RC: Category
of Relation Types. CS: Common-Sense. LX: Lexicographic. First/Second/Third/Fourth number in the N and E columns refers to the KG
for OSDD/CGQA-States/MIT-States/ VAW dataset, respectively.

Method OSDD CGQA-States MIT-States VAW
S Un HM AUC S UN HM AUC S UN HM AUC S UN HM AUC

CN H3 LSTM 85.1 38.0 38.0 24.3 96.4 57.1 37.3 27.0 92.9 65.4 50.9 36.9 55.7 43.9 22.1 12.5
CN H3 GCN 86.7 58.5 44.1 34.0 95.7 62.5 40.0 28.7 88.1 66.7 47.1 32.2 70.3 49.5 30.2 20.8
CN H3 R-GCN 87.7 49.0 42.7 30.4 95.7 71.4 40.9 34.0 78.6 73.4 47.4 32.9 79.5 57.5 38.9 28.8
CN H3 Tr-GCN 87.4 42.2 40.2 27.7 93.6 56.3 39.2 28.8 88.1 67.0 53.6 43.7 80.2 56.8 40.7 29.9
WN H3 LSTM 86.0 60.0 43.3 33.9 96.4 13.4 16.6 8.7 90.5 24.4 24.2 13.2 37.4 55.6 18.1 10.2
WN H3 GCN 86.8 39.5 36.7 21.2 86.4 49.0 34.2 24.1 88.1 54.8 50.1 37.9 64.2 38.3 24.4 19.4
WN H3 R-GCN 85.5 36.0 36.5 22.1 93.6 52.9 40.5 28.9 78.6 47.4 42.9 21.4 69.7 56.0 38.9 28.8
WN H3 Tr-GCN 89.2 48.4 36.6 23.9 86.4 56.6 37.6 26.6 88.1 44.2 37.3 25.9 65.0 54.5 31.8 21.3
CN H2 TH LSTM 86.5 50.0 43.0 28.8 97.1 71.7 38.8 31.9 78.6 60.3 47.8 26.0 61.0 52.6 27.9 17.9
CN H2 TH GCN 84.6 52.8 43.7 30.7 95.7 67.5 40.5 32.0 85.7 73.1 46.6 29.4 74.3 48.3 36.4 27.4
CN H2 TH R-GCN 85.9 48.0 41.2 28.5 95.0 63.6 41.6 31.6 81.0 69.2 51.8 30.0 82.4 57.6 40.5 31.5
CN H2 TH Tr-GCN 85.7 63.7 45.6 34.5 97.1 70.0 43.5 35.6 85.7 70.2 51.6 40.5 82.4 59.4 38.0 32.6

WN H2 Tr-GCN 87.9 23.0 28.6 13.0 92.9 53.8 38.2 28.1 83.3 45.8 39.7 27.3 69.7 45.8 30.5 18.3
WN H3 Tr-GCN 89.2 48.4 36.6 23.9 86.4 56.6 37.6 26.6 88.1 44.2 37.3 25.9 65.0 54.5 31.8 21.3
CN H2 Tr-GCN 86.4 60.6 45.1 34.3 97.1 73.4 46.3 39.5 88.1 69.6 56.2 43.5 82.4 58.9 37.3 32.0
CN H3 Tr-GCN 87.4 42.2 40.2 27.7 93.6 56.3 39.2 28.8 88.1 67.0 53.6 43.7 81.1 48.3 36.9 26.3
CN H3 UN Tr-GCN 85.7 14.8 17.0 7.6 93.6 13.2 15.1 7.4 83.3 26.6 20.6 7.6 83.1 10.2 14.8 5.3
RN Tr-GCN 12.9 11.3 3.2 1.6 15.7 9.7 5.1 2.5 26.7 24.2 12.5 4.6 12.0 9.8 3.0 1.3
CN+WN H2 Tr-GCN 85.7 60.9 45.2 33.9 97.1 72.0 46.0 38.9 88.1 68.9 55.3 43.3 82.0 58.9 39.8 32.6
CN+WN H2 TH Tr-GCN 87.7 69.9 48.6 39.8 97.1 73.4 43.6 36.5 85.7 69.9 51.1 41.2 83.7 58.6 42.9 32.8

WN H2 Tr-GCN 87.9 23.0 28.6 13.0 92.9 53.8 38.2 28.1 83.3 45.8 39.7 27.3 69.7 45.8 30.5 18.3
WN H3 Tr-GCN 89.2 48.4 36.6 23.9 86.4 56.6 37.6 26.6 88.1 44.2 37.3 25.9 65.0 54.5 31.8 21.3
CN H2 Tr-GCN 86.4 60.6 45.1 34.3 97.1 73.4 46.3 39.5 88.1 69.6 56.2 43.5 82.4 58.9 37.3 32.0
CN H3 Tr-GCN 87.4 42.2 40.2 27.7 93.6 56.3 39.2 28.8 88.1 67.0 53.6 43.7 80.2 56.8 40.7 29.9
CN+WN H2 TH Tr-GCN 87.7 69.9 48.6 39.8 97.1 73.4 43.6 36.5 85.7 69.9 51.1 41.2 83.7 58.6 42.9 32.8
CN+WN H3 TH Tr-GCN 87.1 56.3 44.6 31.9 97.1 60.5 41.0 32.5 83.3 68.6 55.9 41.0 80.6 59.2 38.8 30.6

WN H3 Tr-GCN 87.3 46.4 35.7 23.0 85.5 53.6 35.3 25.2 87.2 44.3 37.4 25.7 65.0 54.5 31.8 21.3
WN H3 TH Tr-GCN 89.2 48.4 36.6 23.9 86.4 56.6 37.6 26.6 88.1 44.2 37.3 25.9 68.1 56.0 32.7 23.4
CN H2 Tr-GCN 86.4 60.6 45.1 34.3 97.1 73.4 46.3 39.5 88.1 69.6 56.2 43.5 82.4 58.9 37.3 32.0
CN H2 TH Tr-GCN 85.7 63.7 45.6 34.5 97.1 70.0 43.5 35.6 85.7 70.2 51.6 40.5 82.4 59.4 38.0 32.6

Table 5. Ablation Study. 1st section of the table: comparison for the GNN architecture. 2nd section: comparison for the KG source. 3rd
section: comparison for max number of hops. 4th section: comparison for the node inclusion policy. Bold font indicates top performance
across ablation category. Blue colour indicates top performance across ablation subcategory. S: Best Accuracy on seen classes. UN: Best
accuracy on unseen classes. HM: Best harmonic mean. AUC: Area under curve for the pairs of accuracy for seen and unseen classes. CN:
ConceptNet-based model. WN: WordNet-based model. UN: Embeddings corresponding to concepts unrelated to the target classes. RN:
Random embeddings. H2(3): Maximum number of hops equal to 2(3). TH: Thresholding policy for the nodes of the KG.
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