Dataset Videos Frames ‘ Avg. len. Ann. ‘ Avg. obj size
(train/val)  (train/val) (sec) fps | (% of frame)

VISOR | 5.3k/1.2k 33k/7.7k 12.0 0.5 6.67

VOST ‘ 572770 60k / 8k ‘ 21.2 5.0 ‘ 2.57

Table Al. Dataset statistics for VISOR and VOST. Avg. len.
stands for average video length, and Ann. fps denotes annotation
frames per second.

Abstract

This document provides additional material that is sup-
plemental to our main submission. Section A describes the
associated supplemental video. Section B includes addi-
tional implementation and dataset details, followed by Sec-
tion C for additional experimental results and ablation stud-
ies. Finally, Section D details the societal impact of our
work as standard practice in computer vision research.

A. Supplemental Video

We include an accompanying supplemental video -
video_demo.mp4 - as part of the supplemental materi-
als. In this video we show qualitative segmentation results
of our approach on the two benchmarks VOST [44] and VI-
SOR [13]. For VOST, we show predictions on three videos
showing our method’s capability on small and multiple in-
stances of objects compared to the previous best state-of-
the-art method, AOT [54]. We additionally include a failure
case. For VISOR, we present three videos demonstrating
our method’s tracking capabilities compared to the previ-
ous best method, STM [35], and include a failure case as
well. Furthermore, we evaluate our model on generic videos
sampled from YouTube, with the results presented in the fi-
nal section of the video. The video is in MP4 format and
is 4 minutes 17 seconds long. The codec used for creating
the provided video is H.264 (x264). Please note that due to
file size limitations for supplementary material, we provide
the low-resolution version, while a higher-resolution demo
video will be made publicly available upon acceptance.

B. Implementation and dataset details

General details. We follow a two-stage training protocol
similar to prior works [29, 35, 54, 60], where we first pre-
train our model using synthetic video sequences generated
from static image datasets [10, 16, 18,32,43], and then fine-
tune on target benchmarks. Consistent with prior works,
we use ResNet-50 [19] as the backbone for image encoder
and mask encoder with shared weights. In our Multi-Scale
Matching Encoder, if not specified, we use feature maps
from last two layers of the visual backbone at strides 32 and
16. During training, we use video length of 12, with clip

length L = 2, and a memory bank size of N = 7. We
use AdamW [33] optimizer with 2e~° learning rate over 20
epochs with 624 and 480 image resolution for VOST and
VISOR respectively. For the clip-based memory, we retain
the ground truth for the initial reference frame and mask as
the first element. We perform updates by storing the last
frame and its predicted mask features for each clip in the
memory in a FIFO fashion. During inference, we process
the entire video clip-by-clip to predict the results. Please
find more details in Suppl.

Training and computation resources. We use
AdamW [33] optimizer with weight decay le~*, learning
rate 1e~® for the backbone and 2e~* for the rest of the
model. We train for 20 epochs and reduce learning rate
by 1/10*" factor at the 8" and 16'* epoch. Similar
to AOT [54], we use random resizing and cropping for
data augmentation, avoiding additional augmentations to
ensure a fair comparison. We uniformly use batch size
of 1 per GPU, and conduct experiments on VOST and
VISOR datasets using 4 Nvidia A40 and 8 Nvidia T4 GPUs
respectively. We use video lengths of 12 and 6 for VOST
and VISOR respectively, necessitating the use of higher
GPU memory in the case of VOST compared to VISOR.
The input image resolution is set to 480 and 624 pixels on
shorter side (keeping the aspect ratio same) on VISOR and
VOST respectively.

Architecture. Our model is built on ResNet-50 [19] back-
bone, which excludes dilation in the last convolutional
block compared to STM and related approaches [35, 36].
The backbone is shared for encoding both the images and
masks. Keeping in line with TubeDETR [51], we use fixed-
sinusoidal 2D positional embedding for both image and
mask features. For multi-scale query matching, we use a
multi-head attention layer [27] with a hidden size of 256
and 4 heads for each scale. We perform LayerNorm [2] on
queries and keys before multi-head attention, and on output
after the multi-head attention. We use GELU [20] activa-
tion function on the residual connection for the output, and
use a 10% attention dropout to reduce overfitting.

Our decoder consists of a pixel decoder [6] and a space-
time transformer decoder [51] used after the multi-scale
matching encoder. The pixel decoder [6] produces feature-
pyramid at four scales using a combination of lateral and
output Conv layers, with the hidden dimension / output
channel size of 256. And the space-time transformer de-
coder [51] incorporates 6 layers of multi-head attention,
comprising 8 heads with a hidden dimension of 256. For the
output, we use ReLU as the activation function and maintain
a 10% dropout rate during training.
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Figure Al. Performance breakdown w.r.t. (a) video length and (b) small object size. We show performance comparison of AOT [54]
and our method on subsets of different video lengths and object sizes. (a) We observe that 1) performance decreases in long duration
scenarios, demonstrating the complexity in long videos, and 2) our method generally outperforms AOT [54] on long-range subsets, espe-
cially upto 10% on videos longer than 34 secs. (b) We observe that 1) with smaller object size, the performance decreases confirming the

complexity of the task, and 2) our method outperforms on all small object subsets compared to AOT [

] demonstrating the effectiveness

of our method on small objects (SM). # video denotes the number of videos.

Dataset. The data statistics for VOST [44] and VI-
SOR [13] are outlined in Tab. Al. Notably, the videos in
VOST are twice as long in duration compared to VISOR.
In particular, for VOST, the average length of videos is
21.2 seconds, annotated at 5 frames-per-second (fps). This
amounts to approximately 106 annotated frames per video
on average. In comparison, VISOR includes 6 annotated
frames per video with a much lower 0.5 annotation frame
rate (fps).

Both datasets focus on egocentric videos, thereby result-
ing in relatively smaller average object sizes in compari-
son to the conventional VOS datasets [38]. Specifically,
VOST’s average object size equates to 2.57% of the frame
size, whereas VISOR’s average object size corresponds to
6.67% of the frames. This indicates that designing a model
tailored for objects of various sizes (including small ob-
jects) is essential in egocentric videos, which is tied to var-
ious applications in robotics and augmented/virtual reality.

C. Additional experimental results

In this section, we provide additional quantitative and
qualitative results, along with additional visualization and
analysis.

C.1. Additional quantitative results

Comparing with recent methods of Cutie [7] and
RMem [59] We provide comparison with recent works of
Cutie [7] and RMem [59]. In Table A4, we compare our

performance with Cutie, by re-training it under the same
settings using the official codebase. For completeness, in
Table A3, we compare on DAVIS dataset. As shown in
these tables, our model outperforms Cutie with consider-
able margin on VOST, the more challenging dataset. Addi-
tionally, our model achieves better performance on DAVIS
and competitive results on VOST compared to RMem, as
shown in Table A3.

VOST subsets ablations. In the main paper, we evalu-
ate across various subsets of validation data to measure ca-
pability of the model across different aspects of the prob-
lem, which includes long videos (LNG) and small objects
(SM) subsets. To further demonstrate our model’s perfor-
mance in these challenging scenarios, we provide a break-
down of results on the subsets at a granular level. The re-
sults based on video length subsets is shown in Fig. Ala,
illustrating the 7, scores on different video length ranges.
Notably, while our model demonstrates strong performance
in shorter videos (i.e., less than 16 sec), tracking objects
becomes challenging in longer setting, with performance
(in Jy-score) dropping from 43 to 27 in videos longer than
40 sec (or containing more than 200 frames). Despite this,
our model outperforms AOT by ~ 10% in longer video set-
ting (i.e., video length between 34 and 40 sec) - confirming
the effectiveness of our clip-based memory and matching
strategies in long-range scenarios.

Additionally, the results on small objects (SM) subset is
shown in Fig. A1b, where we plot J;; scores on different ob-



Approach ‘ J&F ‘ J ‘ F
SSTVOS [15] 784 | 754 | 814
AOT-S [54] 79.2 | 764 | 82.0
TBD [11] 80.0 | 77.6 | 82.3
HMMN [42] 804 | 77.7 | 83.1
TAM-VT(Ours) | 81.0 | 77.1 | 84.9

(a) Pre-trained on Static and fine-tuned on DAVIS’17 only.

Approach ‘ Object size

| <1% | <0.5% | <0.3%
HMMN [42] 65.1 52.3 17.4
TAM-VT(Ours) 69.5 63.0 42.6

(b) Performance breakdown on DAVIS’17 val set w.r.t. small
object sizes.

Approach J&E&F | T F
STM [13,35] 81.8 | 79.2 | 843
CFBI [53] 819 | 79.1 | 84.6
CFBI+ [53] 829 | 80.1 | 85.7
STCN [9] 854 | 822 | 88.6
HMMN [42] 84.7 | 819 | 87.5
AOT [54] 849 | 823 | 875
AOT+RMem [59] 852 | 825 | 879
RDE [28] 842 | 80.8 | 87.5
XMem [8] 86.2 | 829 | 895
XMem-+Boosting [58] 87.7 84.1 | 91.2
Cutie [7] 88.8 | 854 | 923
DeAOT [56] 852 | 822 | 882
TAM-VT(Ours) | 853 | 825 | 882

(¢) Pre-trained on Static
YouTubeVOS and DAVIS’17.

and jointly fine-tuned on

Table A2. Performance comparison on conventional datasets. (a) DAVIS’17 val. set. (b) DAVIS’17 val. subsets w.r.t. object sizes. (c)
DAVIS’17 val. set (jointly trained with YouTubeVOS dataset). Best results highlighted in Bold and underline respectively.

Approach | Backbone | J&F | J | F
Xmem + Boosting [58] R50 87.7 84.1 | 91.2
Cutie [7] R50 88.8 | 854 | 92.3
AOT + Rmem [59] R50 852 | 825 | 879
Ours \ R50 \ 85.3 \ 82.5 \ 88.2

Table A3. Comparison on DAVIS’17.

ject size ranges (as a percentage of the frame size). We ob-
serve that performance decreases as object size decreases,
dropping from ~ 65 to as low as 25 with objects smaller
than 0.2% of the frame size, further confirming the com-
plexity of the task. However, we note that our model con-
sistently outperforms the prior best model, AOT [54], across
all subsets, highlighting the effectiveness of our multi-scale
object tracking design.

Performance Comparison on Conventional VOS
Datasets We also verify the effectiveness of our
model on DAVIS’17 [38] benchmark. Following stan-
dard training protocol [42, 55], we pre-train on Static
datasets [10, 16, 18,32, 43]. First, we report fine-tuning
performance on DAVIS’17 only in Table A2a. Our ap-
proach achieves best results on overall scores J&F and
1.7% improvement on the F metric. Second, we draw
comparisons with HMMN [42] on small objects, where the
latter make use of efficient multi-scale memory matching.
We divide DAVIS’17 into subsets based on object size
(similar to the VOST dataset). Table A2b shows that our
model is better equipped to capture small-sized objects on
conventional benchmark, demonstrating the efficacy of our
unified multi-scale encoder-decoder framework. Lastly,
we provide the results of our model when trained on both
YouTubeVOS and DAVIS’17 jointly and evaluated on
the DAVIS’17 val set. Table A2c show that our model is

Ours Static + DAVIS + YT | 38.2 | 49.5

Approach | Backbone | & | T
Cutie [7] Static 325 | 44.6
AOT Static 35.1 | 47.1
Ours Static 36.5 | 48.2
AOT + RMem [59] ‘ Static + DAVIS + YT ‘ 39.8 ‘ 50.5

Table A4. Comparison on VOST with concurrent works.

close to or even outperform previous works, verifying the
generalization of our approach. Note that in the challenging
VOST our method outperforms XMem with a considerable
margin.

DAVIS’17 subsets analysis. In the Table A2a, we demon-
strate that our model achieves competitive performance on
a conventional video object segmentation dataset compared
to previous work. Table A6a shows additional results com-
paring our model with state-of-the-art method (XMem [8])
on different DAVIS’ 17 subsets with respect to object size to
analyze performance on small objects. It clearly shows that
our model is better equipped to capture small-sized objects
on conventional benchmarks, demonstrating the efficacy
of our unified multi-scale memory matching and decoding
framework. It is worth noting that on subsets of extremely
small objects (< 0.3% and < 0.05%), our model consis-
tently outperforms XMem by approximately 2%, showcas-
ing the effectiveness of our design.

Additional comparisons on VOST w/ concurrent works
We also provide comparison with concurrent works [7, 59],
and the results are shown in Table A4. In this table, we com-
pare our performance with Cutie [7] by re-training it under



Approach ‘ Backbone ‘ Multiscale ‘ Parameters (M) ‘ fps

AOT R50 x 15.23 247
CFBI R101 v 66.05 52
CFBI+ R101 v 74.06 10.1
HMMN R50 v 42.76 113
Ours | RO | v | 39.07 | 153

Table AS5. Inference cost and model parameter comparison.
All the models are evaluated using 480 as the shortest image size
and batch size 1 on a single RTX 3090.

the same settings using the official codebase’. We observe
our model to perform better than Cutie [7] with consider-
able margin. Additionally, our model achieves competitive
results on VOST compared to RMem [59].

Addtional comparison on generic VOS benchmarks -
LVOS [21] We experiment with LVOS dataset and report
results in Table A6b. We observe that our method achieves
SoTA results when compared to models that use the same
backbone (=R50). MobileNet-V2 backbone leads to sizable
improvements (see AOT-L). We focus on proposing a novel
architecture for VOS with transformation, leaving the use
of more effective backbones as future work.

Inference cost and model parameter comparison As
shown in Table A5, our model size is slightly higher than
AOT, but it’s lighter than previous hierarchical/multiscale
methods like CFBI+ and HMMN. Furthermore, our model
can perform inference clip-by-clip, it allows us to outper-
form previous methods supporting multiscale processing
(i.e., CFBI, CFBI+ and HMMN) achieving the second best
fps. Our model runs at 15 fps, which is sufficient for most
real-time applications.

C.2. Additional ablation studies

Memory ablations. In the main submission Section 3.4,
we introduced the memory module implemented as a FIFO
(first-in-first-out) queue, initially populated with the fea-
tures of the frame and the ground-truth mask from the initial
reference frame. During training, due to computational lim-
itations, we set the memory bank size to 7 and clip-length of
2 for the memory module. However, during inference, when
gradients are not computed, we have more GPU memory at
our disposal, allowing us to expand the bank size and utilize
smaller clip-lengths to include more frames in memory, po-
tentially improving predictions [39]. Note that we apply lin-
ear interpolation on RTE to expand it accordingly for larger
bank size. Hence, in this subsection, we delve into the im-
pact of employing different bank sizes and clip lengths for
the memory module during inference. The corresponding
results are presented in Tab. A6¢ and Tab. A6d. In Tab. A6c,
we observe a performance decrease as clip length increases,

Zhttps://github.com/hkchengrex/Cutie

corroborating the observations made by a prior clip-based
method PCVOS [36]. This suggests that larger clip lengths
might enable tracking global features across lengthy videos,
but it entails less frequent update to the memory possibly
compromising the tracking. On the other hand, the re-
sults from testing with different bank sizes are shown in
Tab. A6d. We observe a slight increase in performance from
increasing the bank size from 7 to 9, but decrease in perfor-
mance with the further increase. This suggests that enabling
the model to include more frames in memory during infer-
ence results in increase in model’s capacity to perform more
accurate matching over longer-contexts, but reaches a peak
in performance as the model was not trained on larger bank
sizes to effectively use them.

Transformation-aware loss ablations. As mentioned in
the main submission Section 3.5, we compute weights for
each frame in the proposed re-weighting objective in differ-
ent ways. Specifically, we explored three different methods:
connected components, center of mass, and masked area.
For the masked area, we compute the changes in the fore-
ground area of the binary masks. For the center of mass,
we calculate the changes in the relative center of mass. The
relative center of mass is calculated as the center of the fore-
ground binary mask, considering the top-left corner of the
mask as the origin. Lastly, for the connected components
method, we employ OpenCV tools to identify the number
of distinct groups or regions within the mask. The results of
these approaches are presented in Tab. A7a. Notably, sim-
ply using the change in the masked area as the weights in the
proposed objective yielded the most improvement, resulting
in ~ 2% boost for both 7™" and [7"**". Based on this ob-
servation, we adopted the use of masked area as the default
method for computing the weights in our experiments.

Additionally, we note that our transformation-aware re-
weighting strategy can be applied to individual or differ-
ent combinations of the component segmentation losses
(DICE [34] and Focal [31]) computed at the frame-level.
We observe in Tab. A7b that applying re-weighting only to
the Focal loss yields the best performance. Therefore, in our
experiments, we use re-weighting on the focal loss alone as
the default setting to achieve optimal performance.

Lastly, in our novel re-weighting loss we introduced
a parameter, denoted as 7, in the normalization process.
This parameter allows us to control the smoothness of the
weights assigned to each frame. In Fig. A2a, we empirically
assess the effectiveness of different values of 7. We observe
that smaller values of 7 result in higher performance. How-
ever, when 7 falls below 1.0, the weights become overly
sharp, causing a decrease in performance. Note that the
larger the value of 7 the smoother the weights become.
Based on these results, we used 7 = 1.0 as our default set-
ting for the re-weighting loss.
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\ Object size Idx ‘ Bank size  Clip length ‘ Tir J

Approach =GR T2 0.3% | < 0.05% ) 9 I 355 474
XMenm [8] 63.9 39.7 33.8 () 9 2 377 493
TAM-VT(Ours) 64.1 43.1 359 3) 9 3 3277 442
(a) Performance on DAVIS’17 val set w.r.t. small object sizes. (4) 9 4 328 447

(c) Performance on VOST w.r.t. clip lengths during inference.

Approach ‘ Backbone ‘ J&F T va
AOT-L [54] | MobileNet-V2 | 60.9 551 66.8 Idx | Bank size Clip length | J J
STCN [9] RS0 489 439 540 (1 7 2 362 482
RDE [28] R50 537 483 592 @ 8 2 36.2 48.1
XMem [$] R50 529 481 577 3 9 2 37.7 493
AOT-L' [54] R50 482 419 545 4 10 2 36.2 482
Ours R50 547 488 60.6 (5) 11 2 36.4 489
(6) 12 2 354 47.8

(b) Performance on LVOS [21] with approaches using R50
[19] as backbone. Treproduced using official code.

(d) Performance on VOST w.r.t. bank size during inference.

Table A6. (a) Note that these models are jointly trained with YouTubeVOS. (b) T denotes models reproduced using official code. (c)
We observe a peak in distribution of performance w.r.t. clip lengths during inference. This suggests that while larger clip lengths (going
from 1 to 2) allow for accommodating context from longer time spans, it leads to decrease in performance with further increase (2+) as
information at granular time-scale is lost. (d) We observe a peak in performance w.r.t. bank sizes. This suggests that, on one hand, increase
in bank size leads to increase in model’s capacity to perform matching with more number of elements in memory (or longer-context) which
translates to increase in performance. But, on the other hand, we observe decrease in performance upon further increase in bank size,
suggesting that since the model was not trained on larger bank sizes, it fails to effectively utilize them. Bold number denotes the best
performance.

Method |  Re-weighting | Ju J Method | Re-Wweighting Je T
- Dice loss  Focal loss
Baseline - 346 46.1 -
Baseline 346 46.1
D Connected components | 35.4 46.3
(1) v 33.2 454
2) Center of mass 349 452
3) Masked area 36.5 48.2 ) v 36.5 482
: . 3) v v 334  46.0
a
(@ )

Table A7. Performance w.r.t. (a) different re-weighting methods used in transformation-aware loss and (b) reweighting combina-
tions of Dice and Focal segmentation loss. (a) During training, we compute weights (or importance) of each frame while computing total
loss using different methods: 1) Connected components: weights proportional to relative change in the number of connected components,
2) Center of mass: weights proportional to relative change in center of mass, and 3) Masked area: weights proportional to relative change
in area of foreground objects. We observe best performance when re-weighting our loss with the Masked Area method. (b) We observe
best performance when reweighting Focal loss (case 2) only, which we use as a default setting for all our experiments.

C.3. Additional qualitative results positives again, e.g., from confusing a wristband for a chili.
Conversely, our best model adeptly captures the chili with-
out confusion even after the chili is cut, thereby confirming
the effectiveness of our design in video object segmentation,

particularly in handling transformations.

VOST. We conduct a qualitative ablation of our proposed
approach in Fig. A2b. When comparing our model’s perfor-
mance (third row) and that without multi-scale (or single-
scale) matching (last row), we observe that performing
matching on a single-scale allows the model to locate the

object of interest. However, it struggles to perform precise VISOR. To illustrate our prediction results on VISOR, we

segmentation, resulting in false positives.

Additionally, when comparing our model (third row),
ours without RTE (fourth row) and ours without re-
weighting (fifth row), we notice that the baselines fail to
track the object after transformations. This leads to false

provide qualitative results in Fig. A3. In this example, the
target video contains 6 objects of interest with different ap-
pearance and size. Our model is able to, not only track all
objects without confusion, but also capture the objects with
tiny size. This demonstrates the effectiveness of our model
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Figure A2. (a) Performance w.r.t. different 7 used in the transformation-aware reweighting. We observe peak in performance (J) at
7 = 1.0, which we use as a default setting for all our experiments. (b) Qualitative comparison on VOST for different model ablations.

Best viewed in color; red indicates incorrect predictions.

in challenging scenarios.

C.4. Additional Visualization and Analysis

Multi-scale matching Following the experimental results
in Section 4.3, we qualitatively explore the effectiveness of
this multi-scale design on VOST in Fig. A4. We select a
video featuring small objects, and plot attention heat maps
produced by our multi-scale matching encoder. We observe
that our model is able to finely match small objects in fea-
ture maps at multiple-scales. In Fig. A4, for the top-side re-
sults, we select a video with multiple instances. Traditional
approaches, which only consider matching on a single scale
(i.e., scale 1), may struggle when dealing with objects with
similar visual appearances at coarse feature maps. This lim-
itation is evident in the matching attention results at scale 1,
where the model might confuse different onions and fail to
distinguish between them. In contrast, our multi-scale de-
sign, depicted in the scale 2 matching attention results, en-
ables the model to capture subtle visual differences between
two onions, focusing more accurately on the correct onion.

For the bottom-side results, we select a video with small
instances. In the last attention map results, the model strug-
gles to match the object on the coarse features (scale 1),
confusing the object of interest with the human hand and
other objects. However, in finer features (scale 2) matching,
it successfully attends to the object of interest (the herbs
being cut). These findings illustrate that our multi-scale
matching not only allows the model to capture smaller ob-
jects but also potentially prevents the model from confusing
objects with similar visual appearance.

Transformation-aware re-weighting In Section 3.5 in
the main submission, we propose the transformation-aware
re-weighting to enable the model to place greater empha-
sis on objects during transformations. In this subsection,
we provide examples of training data along with the cal-
culated weights w? for re-weighting to illustrate how this
mechanism operates in practical scenarios. These results
are showcased in Fig. A5a. The figure depicts a video
sequence where a person starts cutting an eggplant in the
second frame, leading to a significant change in the fore-
ground mask’s area. Our designed re-weighting strategy
calculates weights for each frame based on these observed
area changes. The weights, displayed in the first row, high-
light the highest peak occurring in the second frame, align-
ing to the frame with the highest degree in object transfor-
mation. Consequently, applying these computed weights to
re-weight the loss enables us to focus on frames where ob-
jects undergo complex transformations.

Multiplicative Relative Time Encoding As outlined in
Section 3.2 in the main submission, our multi-scale match-
ing encoder integrates relative-time-encoding (RTE) to dis-
cern the significance of each frame within the memory. In
this paragraph, we present a qualitative demonstration of
the learned embeddings in RTE, depicted in Fig. A5b. The
results showcase the outcomes obtained using element-wise
multiplication in Eq. 3. The findings in both figures illus-
trate how our RTE highlights the importance of frames dur-
ing the matching module. Notably, the results reveal that the
matching of the current frame heavily relies on its neigh-
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Figure A3. Qualitative results on VISOR. Best viewed in color; red indicates incorrect predictions.

boring frames compared to those further away in the se-
quence. Furthermore, regardless of the number of frames
in the memory, the first couple of frames in the memory
always hold significance, as it represents the ground truth
mask and its neighbouring frame.

C.5. Limitation and failure cases

While our method excels in video object segmenta-
tion with object shape and appearance transformations,
yet it still faces various challenges as follows: (1) Ob-
ject moves out of frame: In our video demonstration
(“video_demo.mp4”), there is a scenario where the object
of interest temporarily moves out of the field of view. Our
model, like prior methods such as AOT, struggles to suc-
cessfully track the object upon its return. When the ob-
ject is out of view, methods relying on matching the current

frame with previous frames encounter difficulties in retriev-
ing it due to the lack of the object presence in the frame
history. (2) Object occlusion with complex transformation:
We illustrate this type of failure in Fig. A6. In this figure,
a worker is spreading cement, and our model, along with
other methods, can track both the shovel and cement ini-
tially. However, once the shovel obstructs the view of the
cement in the subsequent frames while the cement under-
goes complex transformation, the models lose track of the
cement and can only track the shovel. Occlusion events like
this, pose challenges for current video object segmentation
approaches when objects are undergoing such significant
deformations. These cases present significant challenges
for existing video object segmentation methodologies. We
leave these directions for future research.



Figure A4. Visualization of the attention maps in the multi-scale matching modules. Scale 1 has a resolution of 3—12 of the input frame,
and scale 2 is at % resolution. Best viewed in color; lighter colors indicate higher attention scores. The red box in the first frame denotes

the object of interest in the query frame.

D. Societal impact

Semi-automatic video object segmentation has multiple
positive societal impacts as it can be used for a variety
of useful applications, e.g. robot manipulation and aug-
mented/virtual reality. The ability to track and segment ob-
jects in a class agnostic manner can be used in such ap-
plication areas to enable better human interaction with the
environment and improve the user experience. The ability
to track under complex transformations is crucial when de-
ploying in the wild in these applications.

However, as with many artificial intelligence algorithms,
segmentation and tracking can have negative societal im-
pacts, e.g., through application to target tracking in military
systems. To some extent, movements are emerging to limit
such applications, e.g. pledges on the part of researchers to
ban the use of artificial intelligence in weaponry systems.
We have participated in signing that pledge and are sup-
porters of its enforcement through international laws.



Frame

GT mask

1.0032 0.9913

0.9937 1.0029 0.9976

0.9967 0.9883 [1.0064 1.0037

I
1.0035| 0.9878 0.9790

0.9959 0.9849 0.9797

5 4 3 2 1 0
Index for each frame in the memory

0.980 0.985 0.990 0.995 1.000 1.005 1.010 1.015 1.020

(b)

Figure AS. (a) Visualization of Transformation-aware
reweighting. (b) Visualization of RTE. Value in each grid rep-
resents the learned importance score for each frame w.r.t. differ-
ent number of frames in the memory (n). Lighter colors indicate
higher scores.
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Figure A6. Failure case. Best viewed in color; red indicates incorrect predictions. Note that incorrect predictions cover situations where
predictions are missing or when objects are wrongly predicted with another object’s index, particularly occurring when multiple objects
are present in the video. For this figure, both AOT and our model have missed predictions (shown in red color).
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