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1. Additional Results

Few-shot distillation from 1% to 10%. In Tables 1 and 2,
we report results on five downstream tasks, when the stu-
dents use only 2% and 5% of the ImageNet data during
distillation, respectively. As noted in the main manuscript,
we perform linear probing to demonstrate that our method
transfers strong features. We notice that our method, We-
CoLoRA, attains higher performance than the WeCo+KD
method, especially when the distillation data is scarce. We
observe a substantial improvement (of at least 2%) on the
ImageNet downstream task, regardless of the reduction ra-
tio or the distillation training size, when the teacher is the
supervised ViT-B [4] model. We observe the same trend
on the other data sets employed in the evaluation. We
further note that the features learned by our distillation
method also transfer to out-of-distribution data sets, such as
ChestX-ray14 [13]. We consider ChestX-ray14 as out-of-
distribution because it contains medical images, while the
pre-training data set, ImageNet, contains natural images.

We conclude that the proposed distillation method, We-
CoLoRA, is robust and obtains improved performance on
multiple downstream tasks, especially when the pre-training
data set is small. We also emphasize that our method does
not require labeled data, and is able to compress both super-
vised and self-supervised models.

To better assess the performance trends on various down-
stream tasks when the number of samples increases from
1% to 10%, we further illustrate the performance levels ob-
tained by WeCoLoRA vs. WeCo+KD on ImageNet-1K [3],
iNaturalist [12], NWPU-RESISC45 [2], CIFAR-100 [8] and
ChestX-ray14 [13] in Figures 1, 2, 3, 4, and 5, respectively.
We observe that WeCoLoRA obtains significantly higher
performance than WeCo+KD when there is less data in-
volved in the knowledge distillation process (1% and 2% of
the original training set [3]). Moreover, in most of the cases,
WeCoLoRA also outperforms WeCo+KD when 10% of the
original training set in used during knowledge distillation.
We also conducted experiments on the full scale ImageNet
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and observed marginal differences between WeCo+KD and
WeCoLoRA. We therefore conclude that WeCoLoRA is
particularly useful in the few-shot KD setting.
Fewer samples, lighter student. We would like to mention
that 1% of ImageNet corresponds to 12 samples per class.
However, models are often evaluated on even fewer shots.
To this end, we perform extra experiments for 0.25% of Im-
ageNet, i.e. 3 samples per class. In this setting, we also
employ a more aggressive reduction ratio (r = 4), which
leads to a very light student model.

When the number of shots is very small, the model can
collapse due to a low diversity of training samples. Al-
though this is not the particular focus of our method, there
is no obvious reason for WeCoLoRA not to be compati-
ble with orthogonal methods that deal with the issue of col-
lapse. To mitigate the issue of collapse, we combine We-
CoLoRA with k-means++ init to select the training samples.

The results of WeCo+KD and WeCoLoRA for 0.25% of
ImageNet and r = 4 are shown in Table 3. WeCoLoRA
obtains superior results on all three data sets (ImageNet,
iNaturalist and CIFAR-100). When the training samples are
chosen via k-means++, we obtain slightly improved results
on two datasets (see the last row in Table 3).
Layer pruning vs. WeCoLoRA. A promising approach to
create lighter models without much effort is layer pruning.
For transformer models, it was recently found that TopPrun-
ing, a method that drops the top-layers, obtains surprisingly
good results [11]. To this end, we compare WeCoLoRA
with TopPruning, using the same reduction factor of r = 2
for both methods. The results, which are reported in Table
4, clearly indicate that WeCoLoRA outperforms TopPrun-
ing.
Comparing teacher and student features. One question
that arises when applying WeCoLoRA is if the student is
indeed learning features similar to the skipped teacher lay-
ers. To address this point, we compute the mean cosine
similarities between the skipped layers and the correspond-
ing student layers (from 1 to 4), before and after applying
our enhanced LoRA. As shown in Table 5, the similarities
increase after distillation, indicating that the student learns
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ViT-B [4] 2 WeCo+KD 46.9 68.3 35.1 61.6 42.0
WeCoLoRA 63.5 70.0 46.5 68.5 62.9

(supervised) 3 WeCo+KD 37.0 67.8 28.2 59.8 37.9
WeCoLoRA 39.6 68.1 29.5 61.5 38.6

ViT-B [5] 2 WeCo+KD 46.7 68.6 28.3 62.9 41.5
WeCoLoRA 48.2 68.9 28.5 58.8 44.8

(SSL) 3 WeCo+KD 33.6 66.5 20.0 53.7 35.7
WeCoLoRA 35.3 67.0 22.2 56.0 36.8

Table 1. Results of WeCoLoRA and WeCo+KD in terms of accuracy (in percentages) on ImageNet-1K [3], iNaturalist [12], NWPU-
RESISC45 [2] and CIFAR-100 [8], and in terms of mean AUC (in percentages) on ChestX-ray14 [13]. Results are reported for the
supervised ViT-B [4] teacher and the self-supervised (SSL) ViT-B [5] teacher. During the distillation procedure, only 2% of the ImageNet-
1K training set [3] is used.
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ViT-B [4] 2 WeCo+KD 65.3 69.4 45.4 73.5 60.1
WeCoLoRA 67.3 70.0 49.0 69.9 66.6

(supervised) 3 WeCo+KD 52.2 68.4 37.0 66.7 46.9
WeCoLoRA 55.3 69.9 40.2 66.1 51.7

ViT-B [5] 2 WeCo+KD 51.0 69.3 29.9 61.7 47.6
WeCoLoRA 54.0 69.5 32.9 61.5 47.7

(SSL) 3 WeCo+KD 36.1 66.6 18.7 51.3 30.5
WeCoLoRA 37.4 66.5 22.0 58.6 38.6

Table 2. Results of WeCoLoRA and WeCo+KD in terms of accuracy (in percentages) on ImageNet-1K [3], iNaturalist [12], NWPU-
RESISC45 [2] and CIFAR-100 [8], and in terms of mean AUC (in percentages) on ChestX-ray14 [13]. Results are reported for the
supervised ViT-B [4] teacher and the self-supervised (SSL) ViT-B [5] teacher. During the distillation procedure, only 5% of the ImageNet-
1K training set [3] is used.

Method ImageNet iNaturalist CIFAR-100
WeCo+KD (ablated) 14.0 9.9 17.1
WeCoLoRA (ours) 21.6 14.6 25.7
WeCoLoRA (ours) + k-means++ init 21.7 14.9 25.5

Table 3. Accuracy rates on ImageNet-1K, iNaturalist19 and CIFAR-100, when only 0.25% (α= 0.25) of the training set is used during
distillation. K-means++ init is used to select the samples for few-shot KD (to avoid collapse). Compression factor: r = 4. Teacher:
self-supervised ViT-B.

Method ImageNet iNaturalist CIFAR-100
TopPruning [11] 52.6 41.4 56.1
WeCoLoRA (ours) 69.2 49.5 68.3

Table 4. Accuracy rates on ImageNet-1K, iNaturalist19 and
CIFAR-100, comparing our WeCoLoRA with top-layer dropping
(TopPruning). Compression factor: r = 2. Teacher: supervised
ViT-B.

Method Layer 1 Layer 2 Layer 3 Layer 4
WeCo (ablated) 0.693 0.458 0.387 0.268
WeCoLoRA (ours) 0.753 0.686 0.674 0.796

Table 5. Mean cosine similarities (averaged over tokens) between
the student’s layers and the skipped layers from the teacher. The
values are calculated on features derived from 10% of ImageNet.
Compression factor: r = 3. Teacher: self-supervised ViT-B.



ImageNet

Figure 1. Accuracy rates obtained by WeCoLoRA and WeCo+KD on the ImageNet-1K [3] downstream task. Results are reported for the
supervised ViT-B [4] teacher. The horizontal axis corresponds to the percentage of the original training set [3] used during knowledge
distillation. Best viewed in color.

iNaturalist

Figure 2. Accuracy rates obtained by WeCoLoRA and WeCo+KD on the iNaturalist [12] downstream task. Results are reported for the
supervised ViT-B [4] teacher. The horizontal axis corresponds to the percentage of the original training set [3] used during knowledge
distillation. Best viewed in color.

features similar to the skipped teacher layers. This confirms
that enhanced LoRA has the intended effect.

Segmentation results using convolutional networks. To
showcase the versatility of our approach, we test WeCoL-
oRA on a medical image segmentation task, by integrat-
ing it into the U-Net architecture [10]. The segmentation
model employs ResNet-18 [6] as backbone. Since the seg-

mentation model is based on convolutional layers, we re-
place LoRA [7] with ConvLoRA [1]. The experiments
are performed on the Multiple Sclerosis Lesion Segmen-
tation benchmark (MSLesSeg 2024) [9]. We report results
in terms of the Dice coefficient in Table 6, where we com-
pare our WeCoLoRA with the strongest baseline, namely
WeCo+KD. The results demonstrate that WeCoLoRA ob-



RESISC45

Figure 3. Accuracy rates obtained by WeCoLoRA and WeCo+KD on the NWPU-RESISC45 [2] downstream task. Results are reported for
the supervised ViT-B [4] teacher. The horizontal axis corresponds to the percentage of the original training set [3] used during knowledge
distillation. Best viewed in color.

CIFAR-100

Figure 4. Accuracy rates obtained by WeCoLoRA and WeCo+KD on the CIFAR-100 [8] downstream task. Results are reported for the
supervised ViT-B [4] teacher. The horizontal axis corresponds to the percentage of the original training set [3] used during knowledge
distillation. Best viewed in color.

tains higher performance than WeCo+KD, when a convolu-
tional backbone is employed on a segmentation task. This
demonstrates the compatibility of WeCoLoRA with both
transformer and convolutional architectures, as well as its
applicability to diverse tasks, namely classification and seg-
mentation.

Deeper teacher, higher compression factors. To demon-

Method Dice Coefficient
WeCo+KD (ablated) 0.7665
WeCoLoRA (ours) 0.7708

Table 6. Segmentation results in terms of Dice coefficient obtained
with WeCo+KD and WeCoLoRA on the MSLesSeg benchmark.
Compression factor: r=2.



ChestX-ray14

Figure 5. Mean AUC scores (in percentages) obtained by WeCoLoRA and WeCo+KD on the ChestX-ray14 [13] downstream task. Results
are reported for the supervised ViT-B [4] teacher. The horizontal axis corresponds to the percentage of the original training set [3] used
during knowledge distillation. Best viewed in color.

Method Compression factor r CIFAR-100 RESISC-45 ChestX-ray14
WeCo+KD (ablated) 6 22.3 52.8 62.8
WeCoLoRA (ours) 6 24.1 53.6 63.7
WeCoLoRA+supervised fine-tuning 6 18.4 54.5 63.3
WeCoLoRA+classification head transfer 6 27.1 54.2 63.6

WeCo+KD (ablated) 8 20.6 49.2 62.5
WeCoLoRA (ours) 8 25.0 53.8 63.1
WeCoLoRA+supervised fine-tuning 8 21.8 53.3 62.4
WeCoLoRA+classification head transfer 8 25.9 53.6 63.3

Table 7. Results of various training paradigms in terms of accuracy (in percentages) on CIFAR-100 [8], NWPU-RESISC45 [2] and in
terms of mean AUC (in percentages) on ChestX-ray14 [13]. Results are reported for the unsupervised ViT-L teacher or backbone [4].
During the fine-tuning or distillation procedure, only 1% of ImageNet-1K [3] training set is used.

strate the applicability of WeCoLoRA to deeper teachers,
and its robustness to higher compression factors, we per-
form additional experiments with the ViT-L teacher based
on supervised pre-training, considering compression factors
of r = 6 and r = 8. In Table 7, we report the results of
WeCo+KD and WeCoLoRA on CIFAR-100, RESISC-45
and ChestX-ray14. WeCoLoRA outperforms WeCo+KD
for all compression factors, thus showcasing consistent
performance gains across various compression factors and
teacher models.

WeCoLoRA based on fine-tuning instead of distillation.
The feature distillation performed by WeCoLoRA is unsu-
pervised, i.e. our framework does not require classification
labels during distillation. An alternative approach is to em-
ploy supervised fine-tuning instead of unsupervised feature
distillation. As shown in Table 7, the fine-tuning combined

with WeCoLoRA produces worse results on CIFAR-100,
while leading to similar results on RESISC45 and ChestX-
ray14. We thus conclude that the supervised fine-tuning is
not always beneficial.

WeCoLoRA with classification head transfer. One way
to potentially boost the performance of WeCoLoRA is
to transfer the classification head from the corresponding
teacher model, instead of initializing the classification head
of the student model from scratch. This idea is explored in
Table 7 (last row), where it exhibits performance boosts on
CIFAR-100. The results on RESISC45 and ChestX-ray14
do not clearly show the benefit of transferring the classifi-
cation head.



2. Limitations
The main limitation of our method is its applicability to

architectures that use multiple consecutive blocks with the
same configuration, e.g. vision transformers and ResNets
[6]. This restriction is imposed by our weight copying
mechanism. Our ablation results indicate that the weight
copying step is very useful in the few-shot distillation sce-
nario, as it significantly boosts performance (see Table 1
from the main article). Simply removing the weight copy-
ing step is not a viable option, since the performance would
drastically degrade. To make our framework applicable to
any architecture, the weight copying mechanism could be
enhanced with adaptor blocks, which would be able to re-
shape the copied weights to the appropriate size. However,
the adaptor blocks need to be tailored for each specific pair
of teacher and student models. This will increase the com-
plexity of the hyperparameter tuning stage, which, in the
current form, is quite straightforward, i.e. aside from typi-
cal hyperparameters, such as the learning rate and the mini-
batch size, WeCoLoRA only adds the compression ratio r
and the rank of the low-rank matrices k as extra hyperpa-
rameters.
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