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Algorithm 1: DAT
Input: Data Dt, Threshold τ
Initialize: tasks T , Pre-trained M0, Adapted model M t

a

with hyper-adapter Ht,Classification head P t
b

and P t
imb, learnable key kt, Adapter CacheM

for t∼ T do
for i∼len(M) do

Acci← [Cluster(M i
a(D

t)); λ]
end
if len(M) = 0 or max(Acc) ≤ τ then

// Creation
θ ← Limb,b,bd,m{M0,M

t
a, P

t
b , P

t
imb, k

t;Dt}
M.append(kt, Ht, P t)

else
// Selection
initialize Ht with H∗

θ ←
Limb,b,bd,m,td{M0,M

t
a,M

∗
a , P

t
b , P

t
imb, k

t;Dt}
Replace H∗ with Ht

end
end

A. Algorithm
Algorithm 1 shows the overall training process of the

proposed algorithm.

B. Dataset Setting
As depicted in Fig. A, Ordered LT-CIL considers a sce-

nario in which all classes are arranged based on the number
of samples per class and subsequently allocated into dis-
tinct tasks. Conversely, Shuffled LT-CIL assumes that the
appearance of classes across different tasks is random, po-
tentially resulting in varying degrees of imbalance in class
distributions within each task.

*Corresponding authors.

Table A. Comparison of the number of parameters between our
method and other methods under different settings.

Methods Number of Parameters AIATrainable Stored

DualPrompt/E-Prompt=5 0.33M 0.33M 70.39

DualPrompt/E-Prompt=15 0.79M 0.79M 71.11

DualPrompt/E-Prompt=20 1.02M 1.02M 71.05

CODA-Prompt/Prompt=8 3.9M 3.9M 67.61
DAT 0.32M 0.70M 82.77

C. Comparison of Parameters
As shown in Tab. A, for DualPrompt, as the length of

E-Prompt gradually increases, both the trainable parame-
ters and the stored parameters increase. However, the per-
formance improvement remains marginal. In contrast, our
approach exhibits higher performance despite having fewer
trainable parameters compared to DualPrompt. Moreover,
upon completing incremental task learning across the 10-
task scenario, the parameters stored in our method are
nearly equivalent to those of DualPrompt with E-prompt
15. However, our method outperforms DualPrompt by a
substantial margin, demonstrating the effectiveness of our
adapter tuning. And CODA-Prompt obtains poorer perfor-
mance with more parameters.

D. More Ablation Experiments
Tab. B presents detailed experimental results for differ-

ent threshold settings. We explored two extremes: a thresh-
old of 0.0, where the model consistently utilizes the ini-
tial task’s hyper-adapter without creating new ones, and a
threshold of 1.0, where a new hyper-adapter is generated
for each task. Results indicate that as the threshold in-
creases, more hyper-adapters are accumulated, leading to
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Figure A. An illustration of Order LT-CIL and Shuffled LT-CIL scenarios.

Table B. The performance implications of adjusting the threshold τ for DAT.

Methods τ = 0.0 τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9 τ = 1.0

AIA 50.67 57.52 59.46 66.03 71.52 75.88 82.77 82.77 86.83 89.21 90.91
Added +0 +1 +1 +2 +2 +3 +5 +5 +8 +8 +10

incremental performance enhancements. When the number
of stored hyper-adapters is low, the performance gain from
adding hyper-adapters is substantial. For instance, transi-
tioning from 0 additional adapters to introducing 1 results
in a 7.15% performance increase. However, when the num-
ber of hyper-adapters becomes substantial, the performance
gains from adding more adapters diminish. For example,
adding two additional hyper-adapters, from 8 to 10, only
yields a 1.7% performance increase.

Additionally, we explored the effect of embedding
hyper-adapters into pre-trained models and training them
on balanced datasets. The experimental results in Tab. C
demonstrate a considerable performance disparity com-
pared to our method.

E. Hyper-Adapter

Fig. B shows the structure of the adapter and hyper-
adapter. Specifically, for task t, we utilize hyper-adapter
Ht to generate weights for each layer’s adapter. Ht takes
the layer identity as input to generate weights for the down-
projection and up-projection layers in the adapter. With-
out loss of generality, the weight generation process of the
adapter f in layer i can be formulated as follows:[

fθD
i
, fθU

i

]
= Ht (i) , θH ∈ R2×d×di . (1)
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Figure B. The structure of adapter and hyper-adapter.

The hyper-adapter greatly reduces the number of param-
eters required to store. The number of parameters for a
hyper-adapter is roughly equal to that of a single adapter,
namely, |Ht| ≈

(∣∣∣fθD
i

∣∣∣+ ∣∣∣fθU
i

∣∣∣). | · | denotes the param-
eter count operation. That is, the hyper-adapter reduces
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Table C. The performance of a pre-trained model trained with adapters on a balanced dataset.

Methods Average Incremental Accuracy

Pre-trained + hyper-adapter on balanced 66.65
Ours 82.77

Table D. AIA of various methods on NINCO [1].

Methods L2P DualPrompt DAP [3] CODA-Prompt DAT (Ours)
AIA 93.08 93.91 90.62 93.47 95.73

Table E. AIA of various methods with 20 tasks.

Methods L2P DualPrompt CODA-Prompt DAT (Ours)
AIA 43.56 60.77 56.23 70.36

about (L − 1)(|fθD
i
| + |fθU

i
|) parameters. L is the num-

ber of transformer layers in the pre-trained model. We use
the traditional ViT [2] model which contains 12 transformer
layers as the pre-trained model. Therefore, using the hyper-
adapter reduces about 91.6% of the parameters compared to
directly using the traditional adapter.

F. Experimental Results on NINCO

To mitigate data leakage, we conducted a 10-task
shuffled-order experiment on the NINCO dataset Tab. D,
where the classes do not overlap with those in the ViT pre-
trained dataset ImageNet-1K. we also include the long-tail
specific method DAP [3] as a comparison. As shown in
Tab. D, even though the pre-trained model has never seen
those classes, our method can still achieve excellent perfor-
mance.

G. Results of 20 Tasks

We conducted incremental learning on CIFAR-100 with
20 tasks in a shuffled order. As shown in Tab. E, DAT
demonstrates superior performance compared to others.

H. Details on Competitors

In the experiments results on CIFAR-100 and ImageNet-
Subset, we reported the results of UCIR, PODNET, LWS,
and GVAlign based on the values provided in the GVAlign
paper. Therefore, the backbone network for UCIR is still
ResNet. The results for L2P, DualPrompt, and CODA-
Prompt were obtained from our experiments using their of-
ficial code. For all experiments on DomainNet, the results
were obtained based on the official code of these methods.
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