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8. Introduction

In this supplementary material section, we first provide
more details about the BRIAR dataset and the synthetic
occlusions we use in our experiments. Next, we provide
more details for implementing VEN and the Mimic net-
works. We also provide further clarification regarding our
evaluation metrics, and the evaluation protocol we use on
the GREW dataset. We also evaluate VEN on the occlu-
sion classification and the occlusion amount regression task,
along with discussing the additional overhead introduced by
VEN. Further, we provide more information regarding the
reproducibility of our experiments, and we also evaluate our
method on multiple different occlusion settings. Next, we
provide some results on indoor gait recognition datasets like
CASIA-B and OUMVLP. Lastly, we discuss some failure
cases of our model.

9. BRIAR Dataset

BRIAR [2] is a dataset collected for Person Re-ID in
challenging outdoor conditions. It comprises of both im-
ages and video modalities, however, we utilize only the
videos for this work. Some videos contain only the face
information, which we discard while evaluation our gait
recognition approach.

The subset of BRIAR we utilize in our experiments com-
prises approximately 60,000 videos for training and 10,000
videos for testing, each with a duration ranging from 1 to 2
minutes, recorded at 30 frames per second (fps). This ex-
tensive collection of videos offers a diverse array of gait se-
quences captured under various conditions, enabling com-
prehensive training and evaluation of gait recognition mod-
els.

The dataset encompasses a wide range of viewpoints and
distances, including indoor controlled environments, close-
range elevated viewpoints, and aerial perspectives captured
by Unmanned Aerial Vehicles (UAVs). Distances from the
subjects to the cameras span from 100 meters to 1000 me-
ters, introducing varying levels of spatial resolution and tur-
bulence challenges associated with long-distance capture.
Furthermore, the use of UAVs with moving cameras adds
another layer of complexity to the dataset.

Each distance category in the dataset employs different
sensors, capturing gait sequences in both black-and-white
and color formats. Even within the color spectrum, differ-
ent cameras introduce variations in image quality, contrast,
color balance, dynamic ranges, and lens distortions. Some
of these variations can be seen in Fig. 3 of the main paper.

In Fig. 5, we visualize some more frames captured from
the BRIAR dataset, including some examples from the con-
trolled indoor sequences. This huge diversity in the image
quality necessitates robustness in gait recognition models to
a large number of such variations.

The dataset encompasses a wide range of walking con-
ditions, including random walks, structured walks, carry-
ing a large cardboard box, wearing backpacks, using cell-
phones while walking, and even scenarios where subjects
point at cameras while walking. These diverse conditions
introduce variations in gait patterns, postures, and object in-
teractions, enhancing the dataset’s realism and applicability
to real-world scenarios.

BRIAR also provides a predefined evaluation protocol
along with a probe-gallery split for assessing gait recogni-
tion performance. Indoor sequences captured in controlled
environments serve as the gallery set, while outdoor se-
quences, presenting more challenging scenarios, are desig-
nated as probe samples. Notably, standing sequences are
excluded from the evaluation protocol to focus on walking-
based gait recognition.

Different sets of videos of the same subject in different
clothing are also collected. Further, some videos have sig-
nificant occlusions present where the lower portion of the
subject is not visible. With these large variations in acqui-
sition conditions, atmospheric turbulence and changes in il-
lumination introduced by long ranges and different camera
sensors, the outdoor portion of the dataset is the more chal-
lenging part and is meant to be used as the probe set.

In the indoor setups the subjects have different cloth-
ing conditions and either a random or structured way of
walking. However, there are many more viewpoint vari-
ations in these indoor environments. But the indoor data
has much smaller variations in illumination, turbulence, and
noise compared to the outdoor dataset, and is thus meant to
be used as the gallery set.

Only subjects who have explicitly consented to appear in
the videos are included in the dataset, ensuring compliance
with ethical guidelines and data protection regulations. Fur-
thermore, subjects are given the option to decide whether
their images can be used for publication purposes, with only
those consenting to both inclusion in the dataset and publi-
cation being featured in visualizations within the paper.

10. Synthetic Occlusions

Dynamic Occlusions: To simulate dynamic occlusions,
we place moving patches of various sizes in the video.



Figure 5. Some more sample frames taken from videos present in the BRIAR dataset. Subjects have consented to use of these images. Each
row consists of images of one subject. The two leftmost images in both rows show examples of the indoor, controlled gallery sequences.
The remaining images are captured outdoors, and they make up the probe set. As the distance increases from left to right, the quality of the
frames drops significantly.

Some examples have been shown in Fig. 1 of the main
paper. These occlusions try to simulate small station-
ary/moving obstacles which might obstruct the subject from
camera view as the subject moves. Stationary objects like
tall grass, trees, traffic signs and poles can block the subject,
but as the camera follows the subject, the occlusion pattern
from these objects appears to be moving from the frame of
reference of the subject.

We consider two types of patches - small rectangular
patches which can not cover the entire height of the frame,
or tall rectangular patches which cover the entire height of
the frame. The occlusion type to be applied on the video is
randomly chosen to be either a small rectangular patch, or
a tall rectangular patch as shown in Fig. 6. If it is a small
rectangular patch, the height and width of the patch are ran-
domly chosen from the range R, which is set to (0.4, 0.6).
If a tall rectangular patch is to be applied, the width of the
patch is chosen within a different range Rt. Rt is a smaller
range than R because we assume that tall objects like poles
are thin and may not cover the entire width of the frame. We
set Rt to be (0.2, 0.4), meaning the width of the tall patch
may be between 20%-40% of the width of the frame.

Since these patches move acorss the frame, the direction
and speed of movement needs to be decided. The direction
of motion is randomly chosen to be from left to right or right

to left. For the speed of movement, we visualize patches
with different speeds and empirically decide which range of
patch speeds look the most realistic for dynamic occlusion.
We set the range of speeds of these moving patches Rs =
(0.5, 1.0) pixels/frame. Thus, for each video, the speed of
the patch is also selected randomly within this range.

Some more examples of the synthetic dynamic occlu-
sions we use are shown in Fig. 6 of this supplementary ma-
terial section.

Consistent Occlusions: We use three types of consistent
occlusions, namely 1) top occlusion, where the torso and
head of the person may be occluded; 2) bottom occlusion,
where the legs and lower body may be occluded, and 3)
middle occlusions, where the middle part of the body is oc-
cluded. The portion of the frame to be cropped out is chosen
randomly from the fixed range R.

In dynamic and middle occlusions, the occlusion patch
zeros out the pixel values of the occluded region. How-
ever, in the case of top and bottom occlusions, the oc-
cluded portion of the frame is cropped out completely. The
remaining part of the frame is then resized to the fixed
H⇥W = 64⇥64 size of the original frame. Since we work
with binary silhouette masks, resizing using linear interpo-
lation causes the output image to become 8-bit non-binary



Figure 6. More visualizations of the synthetic occlusions on a
video sequence taken from the GREW dataset. The top row shows
middle occlusions. The second tow shows dynamic occlusions,
and the bottom row shows top and bottom occlusions. The occlu-
sion patch is shown with a red boundary in dynamic occlusions
for visualization purposes only. In the synthetic dynamic occlu-
sions, the width of the patch is more when the patch does not cover
the entire height of the video. If it covers the whole height of the
frame, the patch is relatively thinner. In top and bottom occlusions,
the occluded portion is cropped out and the remaining frame is re-
sized to the original height and width.

integer type. Thus, we re-binarize the resized image using
a threshold of 128. This simulates how an object detector
would detect a subject in the case of real consistent occlu-
sions. Some more examples of the consistent occlusions we
use are shown in Fig. 6.

11. Visibility Estimation Network

VEN, V , is a three layer convolutional neural network
with one hidden linear layer and two parallel linear heads
for the classification and regression tasks. The complete
architecture of V is presented in Tab. 5.

Layer Name Input shape Output Shape

Conv1 64 ⇥ 64 ⇥ 1 64 ⇥ 64 ⇥ 32
ReLU, MaxPool1 64 ⇥ 64 ⇥ 32 32 ⇥ 32 ⇥ 32

Conv2 32 ⇥ 32 ⇥ 32 32 ⇥ 32 ⇥ 64
ReLU, MaxPool2 32 ⇥ 32 ⇥ 64 16 ⇥ 16 ⇥ 64

Conv3 16 ⇥ 16 ⇥ 64 16 ⇥ 16 ⇥ 128
ReLU, MaxPool3 16 ⇥ 16 ⇥ 128 8 ⇥ 8 ⇥ 128
AdaptiveAvgPool 8 ⇥ 8 ⇥ 128 128

FC1 128 64
Classification Head 64 3

Regression Head 64 1

Table 5. The architecture of VEN. It is a three layer convolutional
neural network, with one hidden linear layer, and two parallel lin-
ear heads which can predict the type and amount of occlusion in
the input.

Based on how many occlusion types the mimic network
is supposed to be trained on, the classification head clas-
sifies the input into the occlusion classes or the no occlu-
sion category. The cross entropy loss is used to train VEN
through the classification head, so the network gains occlu-
sion type awareness.

The above mentioned classes are simply broad categories
of occlusion types, and the amount of synthetic occlusion
within one category can also vary within a range R. In
our experiments, we set the range of occlusions R to be

(0.4, 0.6), so the output of the regression head is trained to
be close to 0 when there are no occlusions in the input, and x
when the amount of occlusion is x. x is sampled uniformly
within the range R for each video. As seen from Tab. 4 of
the main paper, the regression task helps the network gain
occlusion amount awareness as well.

11.1. Additional overhead of VEN

VEN introduces additional parameters to the backbone
during the inference stage - in terms of an extra convo-
lutional network to generate occlusion relevant features.
Specifically, the architecture of VEN we use introduces
0.1M additional parameters at inference time. This is rel-
atively small compared to the gait recognition backbone -
for example, GaitBase has roughly 7M parameters.

The number of additional parameters introduced is ex-
actly the same as the occlusion detector in [13], since the
only difference between VEN and [13] is the occlusion re-
gression head which is discarded during inference. It should
be noted that we are counting only the parameters used dur-
ing the inference stage and not in the training stage. This
means we are excluding the BNNeck layer in GaitBase,
and the classification and regression heads in VEN in the
numbers reported above. These layers are used only during
training time.

12. Implementation Details

In this section, we elaborate on the implementation de-
tails of our method. For ease of reproducibility, we will
release our source code upon acceptance.

Preprocessing: If the input video Si is of RGB modality,
we first extract binary masks from the video. For this, we
use Detectron2 [36], to obtain the masks around the subject
for each frame. This is done to filter out any covariates like
background, color and texture hampering gait recognition.

On obtaining the silhouette masks, we center the subject
and resize all the frames to a uniform size of H ⇥W sim-
ilar to [5]. In the frames where no subject is detected, we
leave an empty black frame in the output video to keep the
number of frames consistent.

VEN: We train VEN using the Adam optimizer [18] with
a learning rate of 1e-4. During training, the classification
loss Lce and the regression loss Lr are multiplied by loss
weights �ce and �r to calculate the final loss L for the back-
ward pass as shown below

L = �ceLce + �rLr (4)

Empirically, we find that setting �ce = 1.0 and �r =
10.0 yields the best performance in the proxy tasks of oc-
clusion classification and regression.



Mimic Network: For pretraining of Ft, Triplet and Cross
Entropy losses are used as done by [5]. In the distilla-
tion stage, the multi-instance correlational distillation loss
is modelled as a TripletMarginLoss [35] with a margin
m = 0.05.

For training GaitGL models, we randomly sample n =
30 contiguous frames from the full video. For GaitBase
and DeepGaitV2, n is chosen uniformly between (20, 40)
for each video. A batch size of (32, 4) is used for training,
meaning that each batch of training data has 32 identities
and 4 sequences per identity.

Apart from the randomly generated synthetic occlusions,
we also use data augmentation techniques like Random
Horizontal Flipping, Random Cropping and Random Per-
spective to train Ft and Fm. We use the same data augmen-
tation settings as used by [5].

For introducing occlusion-relevant features into the gait
recognition backbone, we adopt the approach used by [13].
Specifically, we utilize the fully connected layers in the later
parts of the gait recognition backbones as positions for in-
serting the occlusion features provided by VEN.

13. Evaluation Details

We use the Top-K rank retrieval accuracy to evaluate gait
recognition performance for all datasets. In addition, we
perform verification as well on the BRIAR [2] dataset, com-
puting the True Acceptance Rate(TAR) at a False Accept
Rate(FAR) of 0.01.

The respective datasets provide their protocols which tell
us which video sequences should be used as probes and
which ones should be used as a part of the gallery set. As
described in Sec. 14, we use a local evaluation protocol for
GREW introduced by [5] so that we can evaluate our mod-
els locally.

To evaluate our approach on synthetic occlusions, we use
the same gallery-probe split from the dataset protocol but
introduce synthetic occlusions in each video during the data
loading stage. It should be noted that the occlusion type
and amount is chosen for each video independently - thus,
there is no correlation between the occlusions in the probe
and gallery sequences of a particular subject. The probe and
gallery sequences may have different types and amounts of
occlusions, which makes our task formulation more chal-
lenging and better suited for practical application.

We compute the gait signatures for each element in the
gallery set, and compare each probe signature with each
gallery to find the Top-K subject matches. We use Eu-
clidean distance to compare probe and gallery elements.
If the true identity of the probe is present in the Top-K
matches, the probe is considered to be recognized correctly.
The percentage of probes recognized correctly is reported
as the rank retrieval accuracy for Rank-K. This process is
repeated for different values of K for more comprehensive

evaluation.

14. GREW evaluation protocol

The GREW dataset [45] does not provide identity labels
for their probe set. Hence, local evaluation of a model is not
possible. According to the official protocol, the matching
scores for each gallery and probe video have to be uploaded
on the GREW competition website, which computes the ac-
curacy of the model. This is limiting for our experiments,
especially since we can not compare our results to other pa-
pers directly and have to re-train previous methods on our
synthetically occluded data.

Thus, as mentioned in the main paper, we use a slightly
different evaluation protocol for GREW which enables local
evaluation. This protocol was introduced by [5] and has
also been used in some existing works [13]. We explain this
modified protocol below.

Each of the 6,000 subjects in the test set of GREW have
two gait sequences, giving a total of 12,000 videos in the
test set. Instead, one video of each subject is chosen as
gallery and the other video is chosen as the probe, giving
each subject one sequence in the gallery set. The rank-
retrieval task is performed on this probe-gallery split and
corresponding Rank-K metrics are computed. For the pur-
poses of this protocol, the unlabelled videos in the ‘probe’
directory of GREW are ignored.

As a sanity check to confirm whether we reproduce the
existing methods correctly, we take the teacher model Ft,
which is trained on complete videos, and evaluate it di-
rectly on the original GREW data without any occlusions.
We evaluate this model both on the official GREW proto-
col and the modified protocol. The official protocol results
are directly comparable to the results in the original papers,
indicating we have correctly reproduced these works. The
results are summarized in Tab. 6. We observe that the lo-
cal evaluation protocol consistently has lower rank retrieval
accuracy than when we use the official protocol. We think
this is because in our local evaluation protocol, there is only
one gallery sequence per subject. However, in the official
protocol, there are two gallery sequences per subject - mak-
ing it a bit easier for the model to match the probe to the
appropriate gallery.

15. VEN Results

We train VEN on the proxy tasks of occlusion type clas-
sification and occlusion amount regression. This helps VEN
to learn occlusion-relevant features, which are useful for oc-
cluded gait recognition as seen in Tab. 4 - when we remove
VEN, the ‘vanilla’ mimic network performs worse.

However, we also perform a sanity check evaluation of
VEN on these same proxy tasks themselves, similar to [13].
More specifically, we compute the classification accuracy



Rank-1/Rank-5 Local Evaluation Official protocol
GaitBase [5] 55.3/72.1 59.9/74.7

DeepGaitV2 [4] 73.1/85.3 78.4/88.6

Table 6. Comparing the evaluation results on the official protocol
(using the submission website) with our local evaluation proto-
col. The models are trained and evaluated on the original GREW
dataset, making them identical to the teacher model Ft in our
method. The numbers are the Rank-1/Rank-5 accuracies on the
GREW dataset. The numbers in the ‘official protocol’ column are
directly comparable to the results in the corresponding papers. We
perform this experiment as a sanity check to see whether we re-
produce the original methods correctly.

Accuracy/MSE
Train

BRIAR GREW

Test
BRIAR 99.9/0.00060 99.7/0.00060

GREW 99.0/0.00161 99.9/0.00031

Table 7. Cross dataset evaluation of VEN, on BRIAR and GREW
datasets on top, bottom and no occlusion classes. The proxy tasks
of occlusion type classification and occlusion amount regression
are used to perform this evaluation. The first value of each cell
represents classification accuracy of the occlusion type, the second
value represents the MSE in occlusion amount prediction. VEN
performs reasonably well on both these tasks, indicating that it has
learned occlusion-relevant information. We can also see that VEN
is robust to domain shifts, since switching to a different dataset for
evaluation does not decrease the performance as much.

of the occlusion type, and the mean squared error in the
regression amount for frames taken from the test set, of the
same or a different dataset than it was trained on. This helps
us get an idea of the robustness of VEN to domain shifts.

The results of this evaluation of VEN are shown in
Tab. 7. We observe that VEN is able to perform well on
these proxy tasks and is also able to generalize to other do-
mains/datasets.

16. Additional Experiments

16.1. Reproducibility of results

Since our evaluations are based on random occlusions,
we also perform multiple evaluations of our network to
check whether the results are reproducible across evalua-
tion runs. Hence, we perform 10 repeat evaluation runs on
the mimic network on the GREW dataset using the Gait-
Base backbone. We observe a standard deviation of 0.35%
in the Rank-1 accuracy, indicating there is very little change
in overall performance due to the introduction of random-
ness in the evaluation process.

Changing occlusion types Rank-1 Rank-5
Baseline-2 9.73 19.52

Occlusion Aware [13] 14.63 27.65
Mimic Network 16.05 29.75

Table 8. Effect of flipping the occlusion type in the middle of a
video, between top and bottom occlusion cases. The mimic net-
work is able to deal with changing occlusion types better than
other methods even though it too has not seen such data dur-
ing training. This further demonstrates the generalizability of our
method.

Restricting Occlusion Types Rank-1 Rank-5
Top occlusion only 30.17 47.27

Middle occlusion only 29.62 48.67
Bottom occlusion only 14.17 26.6

Table 9. Restricting the occlusion types during evaluation of the
mimic network. This shows the relative difficulty of different oc-
clusion types. We can see that bottom occlusions are the most
difficult for the mimic network, since the gait is much more diffi-
cult to observe when legs are not visible.

16.2. Changing occlusions within a video

In all our previous experiments, we have assumed that
the occlusion type remains the same across the video. Here,
we conduct an experiment where the occlusion type can
change among the frames in the video. More specifically,
we flip the occlusion type from top to bottom and vice versa
in the middle of a video to see whether this hampers the
performance of the model. Indeed, when comparing it to
Tab. 1 of the main paper, there is a drop in performance for
all methods. However, we observe that the mimic network
still outperforms other methods in this changing occlusion
scenario as shown in Tab. 8. This further demonstrates the
generalizability of our method.

16.3. Difficulty of different occlusion types

In this section, we compare the relative difficulty of dif-
ferent occlusion types for the mimic network. For this, we
take a model trained on top, bottom and middle occlusions.
However, during evaluation, we restrict the occlusions to
one type at a time, for top, bottom and middle occlusions.
The results are presented in Tab. 9. As one might expect,
bottom occlusions are the most difficult for the network to
work on, since the legs - the body part where the most obvi-
ous gait patterns appear - are not visible in these occlusions.
Interestingly, top and middle occlusions are roughly equally
difficult for the model.

16.4. Training on all occlusion types

So far, our experiments have focused on top and bot-
tom occlusions, with some analysis being done on middle



All occlusion types Rank-1 Rank-5
Baseline-2 30.3 46.2

Occlusion Aware 35.5 52.4
Mimic Network 43.0 60.2

Table 10. Performance of different methods on the mixed occlu-
sion set, comprising of top, middle, bottom, dynamic small and
dynamic tall patches. These results are on the GREW dataset us-
ing the GaitBase backbone.

and dynamic occlusions. Since it is not practical to train on
all possible occlusion types that may occur, a model needs
to be able to generalize to newer occlusion types. Hence,
we do a generalizability evaluation in the ‘Zero-shot evalu-
ation’ columns of Tab. 2 in the main paper, taking a model
trained on top and bottom occlusions and applying it on
middle or dynamic occlusions.

However, if a particular type of occlusion is anticipated
in the task setup - maybe due to camera placement con-
straints in the final use case - it is possible to prepare the
model for the specific occlusion type. Generally, the trend is
that training a model on a specific occlusion type improves
performance on that occlusion set. This is demonstrated in
the Training columns of Tab. 2 of the main paper. In these
training columns, we add an additional occlusion type (mid-
dle or dynamic) in the training set, in addition to top and
bottom occlusions.

While training on newer occlusion types helps, we re-
iterate that it is not practical to train (and evaluate) a gait
recognition model for every possible occlusion type which
might occur. Hence, in our main paper, we focus on only a
limited set of occlusion types (top and bottom occlusions)
for training the model in our main results and then try to
see whether this model generalizes well to other occlusion
types - rather than training the model on all the occlusion
types at once.

In this supplementary material section, for completeness,
we also present the results from training new networks on
the combined set of all occlusion types we have used in
our experiments - Top occlusions, Middle occlusions, Bot-
tom occlusions, dynamic small patch occlusions and dy-
namic tall patch occlusions. The results are summarized
in Tab. 10. We observe that the mimic network is still able
to outperform other approaches on this combined occlusion
set.

16.5. Different occlusion ranges

In our work, we pick an occlusion range R, which we set
to (0.4, 0.6) for most of our experiments in consistent oc-
clusions. This means the amount of occlusion is randomly
sampled to be 40-60% of the frame dimension. In this sec-
tion, we explore how the performance changes on different
occlusion ranges. We present the results in Tab. 11. As ex-

Range Rank-1 Rank-5
40-60% 28.38 (0.51) 45.43 (0.63)
30-50% 33.62 (0.61) 51.33 (0.71)
20-40% 40.25 (0.73) 57.68 (0.80)
10-30% 45.35 (0.82) 61.85 (0.86)

Table 11. Performance of the mimic network on multiple ranges
of top and bottom occlusion, on the GREW dataset using GaitBase
backbone. The RP values are shown in (.). The first row denotes
the experiments with the standard occlusion range we use through-
out the paper. Both the rank retrieval accuracy and the RP increase
as we reduce the occlusion range, as expected.

pected, the performance improves as we reduce the amount
of occlusion. This is reflected in both the rank retrieval ac-
curacy and the RP values.

Our results on different occlusion types or different oc-
clusion settings are some basic analyses which we per-
formed to investigate how different occlusions impact the
gait recognition problem. This is in no way a comprehen-
sive analysis of which occlusion setting is more practical, or
more likely to occur in real scenarios. We maintain that the
focus of this work is to propose an approach which works
better than other approaches for some given occlusion set-
tings. The analysis of different occlusion types is out of the
scope of this work and we leave it up to future research.

16.6. Speed of adaptability

In the adaptability scenario, we extend the capability of
training a model on a new type of occlusion in addition to
the old occlusions it was trained on. We discuss how effec-
tively the networks are able to adapt to different occlusion
types in Tab. 2. Here, we discuss the speed of this adapta-
tion - how much re-training is required to adapt the model
to a new occlusion type. We discuss the GaitBase backbone
on the GREW dataset.

GaitBase is trained on 180,000 iterations on the GREW
dataset, according to the settings used by [5]. We also train
the model on top and bottom occlusions for the same num-
ber of iterations. However, when adapting the model to
a new occlusion type, say middle occlusions, we train the
model further until the training loss converges with the new
occlusion set. We observe that the training loss converges at
around 20,000 iterations. Thus, the network is able to adapt
to a new occlusion set with additional training of 20,000
iterations, or roughly 11% of additional training time.

16.7. Results on indoor datasets

Our main focus is on the outdoor, in-the-wild scenar-
ios where occlusion is more likely to occur. Hence, we
focus our experiments on in-the-wild datasets like GREW,



Method CASIA-B OUMVLP
NM BG CL NM

Baseline-1 22.76 (0.23) 20.45 (0.22) 10.03 (0.13) 2.09 (0.02)
Baseline-2 31.35 (0.32) 24.56 (0.26) 13.98 (0.18) 14.47 (0.16)

Occlusion Aware 52.80 (0.54) 47.10 (0.50) 33.46 (0.43) 17.65 (0.19)
Mimic Network (ours) 69.42 (0.71) 57.12 (0.61) 37.35 (0.48) 25.42 (0.28)

Table 12. Rank-1 accuracy for different conditions on CASIA-B
and OUMVLP datasets, on top and bottom occlusions. The corre-
sponding RP values are reported in (.). The mimic network is able
to outperform other approaches on the indoor datasets as well.

Gait3D and BRIAR. However, for completeness, we evalu-
ate our approach on indoor datasets using the simulated top
and bottom occlusions as well. We report the Rank-1 ac-
curacy on Normal Walking (NM), Baggage (BG) and Cloth
Changing (CL) for the CASIA-B dataset according to the
standard protocol [5]. We also report the Rank-1 accuracy
on NM for OUMVLP according to the standard protocol
used in [5]. Additionally, we report the RP values for all
these metrics in (.). The results are presented in Tab. 12.
They show a similar trend, where the mimic network is able
to outperform other methods on occluded gait recognition.

17. Failure case Analysis

Though our model is able to improve performance on
occluded gait recognition, it is not perfect. We have dis-
cussed the relative difficulty of different occlusion types in
Sec. 16.3, concluding that the model is more likely to fail in
bottom occlusions. From Tab. 11, we also empirically con-
firm that the model is more likely to fail when the occlusion
is more severe.

In this section, we discuss some of the specific failure
cases of the model. We have shown some examples of
probes taken from the GREW dataset which are misiden-
tified by our model in Fig. 7. In some of these probes, it is
not possible to make out which body part is present in the
input. This makes it difficult to extract its correlations with
the missing body parts. In some probes, only the head is
visible and there is barely any motion present in the input.
It becomes difficult to recognize the subject from a generic
circular silhouette without any characteristic motion.

From this observation, we can conclude that the model
can not perform on any input - some basic body parts have
to be recognizable for the model to extract correlations with
the other body parts. Further, temporal information is nec-
essary for the model to recognize the gait of the subject.
Without any motion in the input, the model will likely not be
able to identify the subject correctly. These are recognized
as potential situations where there is scope for improvement
and we leave this to future work.

This error analysis has been performed on the GREW
dataset with the mimic network using the GaitBase back-
bone.

Figure 7. Visualization of some of the failure cases of the model
- the misclassified probes on the GREW dataset. We see that in a
lot of these examples, it is not even clear which body part is being
shown; it is extremely difficult to identify these subjects clearly
because of the lack of discriminative information in the input.

18. Cross-Entropy loss

In our experiments in Tab. 3, we observe that adding
cross-entropy loss to our Multi-instance Correlational KD
(MiCKD) loss for training the mimic network ends up re-
ducing performance. Here, we try to analyse this issue.

We follow the cross-entropy formulation used in [5],
where we use a BNNeck layer on the embeddings before ap-
plying cross entropy loss. This is shown to stabilize training
and yield better performance. However, this cross-entropy
(XE) formulation hurts the performance of the model when
used along with the MiCKD loss. To investigate this fur-
ther, we plot the t-SNE features of some samples from the
GREW dataset in Fig. 8.

We observe an interesting pattern in the MiCKD + XE
embeddings, where a lot of the embeddings are clustered
in the center while some are scattered further away. The
proximity of most of the embeddings in the center makes it
difficult to match probe embeddings to the proper gallery.
On the other hand, the embeddings in the MiCKD figure
are clustered better than MiCKD + XE. Based on this ob-
servation, we conclude that when MiCKD and XE are used
together, the embeddings are not able to cluster well - in
other words, MiCKD and XE loss do not go well together.

Based on the results of [5], we know that Triplet Loss and
cross-entropy loss go well together. Thus, one might try to
replace MiCKD with the Triplet Loss used in [5], and use
it along with cross entropy loss. However, this formulation
when applied to occluded data is the same as Baseline-2
in Tab. 3; it performs worse than even MiCKD + XE. It
should be noted that VEN has been removed in these set of
experiments, and we are dealing with a vanilla variant of the
mimic network, one without the VEN.
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