
A. Additional results on scatter plots
Additional results to Sec. 4.2 are presented in Fig. 10.
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(a) ProGAN
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(b) StyleGAN
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(c) StyleGAN2
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(d) BigGAN
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(e) CycleGAN
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(f) StarGAN
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(g) GauGAN

20 10 0 10 20
UnivFD logits

20

15

10

5

0

5

10

15

20

Sh
uf

fle
 2

8x
28

 lo
gi

ts

Ground truth
0_real
1_fake

(h) DeepFake
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(i) DALL-E
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(j) GLIDE_100_10
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(k) GLIDE_100_27
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(l) GLIDE_50_27
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(m) ADM
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(n) LDM_100
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(o) LDM_200
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(p) LDM_200_cfg
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(q) SITD
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(r) SAN
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(s) CRN
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(t) IMLE

Figure 10. Scatter plots of per-sample scores. X-axis is UnivFD logits, and Y-axis is the logit from PatchShuffle with patch size 28. The
decision boundary of UnivFD (red) and SFLD (green) are shown.



B. Datasets

B.1. Train dataset

To establish a baseline for comparison, we adopt the
most common setting for training the detection model,
namely the train set from ForenSynths [49]. The train set
consists of real images and ProGAN [18]-generated images.
It involves 20 different object class categories, each contain-
ing 18K real images from the different LSUN [51] datasets
and 18K synthetic images generated by ProGAN.

B.2. Test dataset

We evaluate the performance of SFLD on (1) conven-
tional benchmarks, (2) TwinSynths which we proposed, (3)
low-level vision and perceptual loss benchmarks. In this
section, we provide a detailed description of the configura-
tions for the conventional benchmarks and low-level vision
and perceptual loss benchmarks.

Conventional benchmark This is from ForenSynths
[49] and Ojha et al. [32], including 16 different subsets of
generated images, synthesized by seven GAN-based gener-
ative models, eight diffusion-based generative models and
one deepfake model. The subset of GAN-based fake im-
ages are from ForenSynths [49], including ProGAN [18],
StyleGAN [19], StyleGAN2 [20], BigGAN [2], Cycle-
GAN [55], StarGAN [7], and GauGAN [34]. The subset
of diffusion-based fake images are from Ojha et al. [32], in-
cluding DALL-E [10], three different variants of Glide [31],
ADM(guided-diffusion) [12], and three different variants
of LDM [38]. Deepfake set is from FaceForensices++ [40]
which is included in ForenSynths [49]. The real images cor-
responding to the fake images described above were di-
rectly taken from the same datasets. Those are sampled
from LSUN [51], ImageNet [41], CycleGAN [55], CelebA
[24], COCO [22], and FaceForensics++ [40].

Low-level vision and perceptual loss benchmarks
Low-level vision benchmark consists of SITD [5] and SAN
[9]. These are image processing models that approximate
long exposures in low light conditions from short expo-
sures in raw camera input or process super-resolution on
low-resolution images. Perceptual benchmark consists of
CRN [6] and IMLE [21]. These models color the seman-
tic segmentation map into a realistic image while directly
optimizing a perceptual loss. These benchmarks are from
ForenSynths [49].

C. Qualitative analysis on TwinSynths dataset

We show the GradCAM visualization of UnivFD [32]
and Patch-shuffle 28×28 using the TwinSynths dataset in
Fig. 11. Similar to Sec. 4.4, UnivFD is shown to focus on the
class-dependent salient region, whereas our method focuses
on the entire image region. Moreover, we observed that for

Benchmark SFLD (224+24) SFLD (224+56) SFLD

center full image center full image center full image

main benchmark 98.04 98.03 98.37 98.39 98.40 98.43
CRN 94.41 96.62 94.17 97.24 91.97 95.79
IMLE 97.55 98.65 98.12 99.23 96.92 98.64
SITD 59.36 64.82 67.71 76.66 60.38 71.90

Table 6. mAP results of the various sizes of test images, comparing
two different patch selecting methods. Center denotes that the im-
ages have been center-cropped to 224×224, while full image means
that random patches from the full image have been combined to re-
construct a 224×224 image.

TwinSynths dataset, UnivFD does respond identically to re-
al/fake images which indicate its inability to capture subtle
fake image fingerprints, whereas our method shows the re-
sponse to such a difference.
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(b) PatchShuffle(patch size 28) examples

Figure 11. Class activation maps (CAM) for UnivFD [32] and
the patch-shuffled detector (ours) in TwinSynths dataset. Each
row shows examples from TwinSynths-real, TwinSynths-GAN,
TwinSynths-DM sets. GradCAM [15, 43] was used to obtain the
heatmaps.

D. Effect of selecting patches from the whole
image

Fig. 12 illustrates the concept of patch extraction of
SFLD mentioned in Sec. 2.1. Unlike many alternative de-
tection methodologies, SFLD extracts patches from any po-
sition within the input image at the test time. This approach
enhances the detector’s receptive field and improves perfor-



Center crop

Combine patches
from the whole image

Figure 12. Illustration of the test input processing strategy. In typ-
ical methods, a test image is center-cropped before being passed
to the detector. Our patch shuffling strategy allows us to select
patches from the entire image region, effectively increasing its re-
ceptive field.

Figure 13. Examples of two image degradation

mance for images that have higher resolution than 224×224.
In Tab. 6, we compare results on benchmarks that have high-
resolution images. We consider different SFLD ensemble
options and the location of the selected patch. The main
benchmark consists mostly of 256×256 images, which have
little margin with a 224×224 center crop. Meanwhile, the
CRN and IMLE benchmarks have 512×256 images, and
the SITD benchmark includes images much larger up to
2,848×4,256 or 4,032×6,030.

We observed that the discrepancy between the two
methodologies was minimal when the test image was small.
However, as the image size increased, the performance of
the method that solely focused on the center of an image
became increasingly constrained.

E. Image degradation examples
Fig. 13 shows examples of image gradations. According

to our definition of high- and low-level features, we can con-
sider that the gaussian blur attacks both high- and low-level
features in the image, and the JPEG compression attacks on
low-level features in the image.

F. Robustness against image degradation
Since image degradation was not considered during

training, it may be useful to examine the changes in output
distribution (as shown in Fig. 16 in supplementary mate-
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(b) Diffusion-based generators.

Figure 14. Results of the ensemble models of UnivFD and the
patch-shuffled model with each patch size. For 224, it is the same
as UnivFD.

rial) to analyze the model’s operational tendencies in detail.
Fig. 16 reveals distinctions between the high-level feature
model (UnivFD Fig. 16b), low-level feature model (NPR
Fig. 16c), and integrated model. The distributions of SFLD
and UnivFD remain distinguishable, despite a slight de-
cline in discrimination performance. However, NPR aligns
real and generated images into the same distribution. This
behavior arises from the operational mechanism of each
model. NPR primarily focuses on low-level features, result-
ing in a catastrophic failure to maintain robustness against
JPEG compression. UnivFD demonstrates relative robust-
ness due to its emphasis on high-level features through
CLIP visual encoders; however, there is a slight perfor-
mance penalty because the visual encoder does not com-
pletely disregard low-level features. In contrast, SFLD ex-
hibits robustness against JPEG compression by integrating
both high- and low-level features through ensemble/fusion,
allowing each to compensate for the information lost in the
other.

G. Effect of patch sizes
To supplement Fig. 9a in the main text, we checked the

AP for each generator, rather than the average AP on the
conventional benchmark. Fig. 14 illustrates that SFLD con-
sistently maintains high performance as long as the patch
size is not smaller than the patch size of the image encoder
backbone. This is because when the shuffling patch size sN
is smaller than the ViT’s patch size, the input tokens are af-
fected by patch-shuffling to get an unnatural image patch,
resulting in the encoder not properly embedding the visual
feature.

H. Ablation on the pre-trained image encoder
The pre-trained image encoder is employed to learn the

features of the “real” class. According to [32], directly fine-
tuning the encoder makes the detector overfit to a specific
generator used in training. This results in low generaliza-
tion to unseen generators. Therefore, we utilized the frozen
CLIP:ViT-L/14 model following UnivFD.

Tab. 7 show that our patch shuffling and ensembling
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Figure 15. Class-wise detection results for StyleGAN-{bedroom,
car, cat} class categories reported in AP. bedroom class is a novel
class that is not in the training set.

strategy improves the performance regardless of the pre-
trained backbone. All models are trained only with real and
generated images from ProGAN and tested on the various
unseen generated images in conventional benchmark. For
ImageNet-ViT, we used ViT-B/16 model, following Uni-
vFD paper [32]. Since its encoders have patch size of 16,
we utilized 16 and 32 for patch sizes instead of 28 and 56.
Moreover, note that simply employing different pre-training
datasets or strategies – ImageNet, DINOv2, OpenCLIP –
does not address the content bias problem. (see Fig. 15)

I. In-the-wild applications of SFLD

We applied our SFLD to in-the-wild AI-generated im-
age detection, especially to a deepfake detection bench-
mark. We have already demonstrated performance on a
FaceForensics++ [39] subset, which is a deepfake detection
benchmark created using face manipulation software [11].
Here, we have added Tab. 8 with experiments using Gener-
ated Faces in the Wild [1] datasets. SFLD shows state-of-
the-art performance in detecting real-world deepfakes.

J. Pseudocode of SFLD

See Algorithm 1.

K. Related works

AI-generated image detection on specific image gen-
eration models Research on distinguishing between syn-
thetic and real images using deep learning models has in-
creased with the development of image generation models.

Early works were focused on finding the fingerprints
in images generated with GANs, which were targeted at
high-performing image generation models. Two major ap-
proaches were the use of statistics from the image domain
[28, 30] and the training of CNN-based classifiers. In par-
ticular, in the case of using CNNs, there are two main ap-
proaches: focusing on the image domain [29, 47, 52] or the
frequency domain [14,27,48]. Specifically, GAN-generated

Algorithm 1 PyTorch-style pseudocode of SFLD

"""
Args:

image: A test image instance
n_views: Number of views for random patch shuffle

averaging. Defaults to 10.
visual_encoder: A CLIP-pretrained ViT-L/14 visual

encoder.
Returns:

output: a real/fake score normalized to [0,1] range.
"""

# prediction from 224x224 unshuffled view
feature = visual_encoder(image)
output_224 = classifier_univfd(feature)

# prediction from 56x56 random shuffled views
output_56 = []
for _ in range(n_views):

image_shuffled = patch_shuffle(image, size=56)
feature = visual_encoder(image_shuffled)
output = classifier_56(feature)
output_56.append(output)

output_56 = mean(output_56)

# prediction from 28x28 random shuffled views
output_28 = []
for _ in range(n_views):

image_shuffled = patch_shuffle(image, size=28)
feature = visual_encoder(image_shuffled)
output = classifier_28(feature)
output_28.append(output)

output_28 = mean(output_28)

# ensemble the logit scores
output = mean([output_224, output_56, output_28])
output = output.sigmoid()

images have been found to exhibit sharp periodic artifacts
in this frequency domain, leading to a variety of applica-
tions [8, 14, 37].

Recently, generative models took a big leap forward with
the advent of diffusion models, which called for fake im-
age detection methods that are able to respond to diffusion
models. However, some studies show that existing models
trained to detect conventional GANs often fail in images
from diffusion models. For example, periodic artifacts that
were clearly visible in GAN were rarely found in diffusion
models [8, 37]. In response, new detection methods opti-
mized for diffusion models have emerged, for example, ap-
proaches that use diffusion models to reconstruct test im-
ages and evaluate them based on how well they are recon-
structed [26, 50, 53].

Generalization of AI-generated image detection Re-
cently, the community has shifted its focus towards gen-
eral AI-generated image detectors that are not specific to
GAN or diffusion. In particular, the development of com-
mercially deployed generated models that do not reveal the
model structure has increased the demand for such a univer-
sal detector.

Apart from existing attempts to learn a specialized fea-
ture extractor that simply classifies real/fake in a binary
manner, Ojha et al. [32] used the features extracted from
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(a) The changes of SFLD output distribution
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Figure 16. The changes of model output distribution against JPEG compression

Patch sizes
Pre-training ImageNet-ViT

Patch sizes
Pre-training DINOv2-ViT [33] OpenCLIP-ViT [16] CLIP-ViT

Acc. AP Acc. AP Acc. AP Acc. AP

224 (UnivFD [32]) 62.45 69.30 224 (UnivFD [32]) 81.89 91.75 86.49 96.90 85.89 96.29
224+16 63.88 72.23 224+28 82.88 93.42 86.50 97.59 91.94 98.03
224+32 63.34 71.36 224+56 82.44 93.04 86.87 97.70 92.05 98.39
224+32+16 (ours) 63.70 72.18 224+56+28 (ours) 82.26 93.26 86.19 97.49 93.30 98.43

Table 7. Detection accuracy and AP on a conventional benchmark of the proposed patch shuffling and ensembling (SFLD) strategy across
various pre-trained encoders. For the ImageNet encoder, ViT-B/16 is used. For the other encoders, ViT-L/14 is used.

Method GFW [1]

Acc. mAP

NPR [46] 53.30 47.63
UnivFD [32] 70.07 85.55
SFLD(224+56) 77.80 86.70
SFLD 77.28 86.70

Table 8. Performance on the in-the-wild deepfake detection bench-
mark.

a strong vision-language pre-trained encoder that is not
trained on a particular AI-generated image. Zhu et al. [56]
combined anomaly detection methods to increase the dis-
crepancy between real and fake image features.

Furthermore, several studies have concentrated on an-
alyzing pixel-level traces on images inevitably left by the
image generators. Tan et al. [46] exploited the artifacts that
arise from up-sampling operations, based on the fact that
most popular generator architectures include up-sampling
operations. Chai et al. [4] tried to restrict the receptive field
to emphasize local texture artifacts.

We design a simple yet powerful general AI-generated

image detector that utilizes the feature space of the large
pre-trained Vision Language Model. We apply image ref-
ormation to capture not only global semantic artifacts but
local texture artifacts from the input images, ensuring de-
tection performance and generalizability on unseen genera-
tors.


