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A. Datasets and downstream tasks

Tab. 1 in the main paper and Tab. 4 in the Appendix
summarize the datasets used for training LeADER and
the downstream tasks on which LeADER has been evalu-
ated, respectively. Below, we provide the details of each
dataset as well as the downstream tasks associated with each
dataset.

PadChest [1]: The PadChest dataset is a large-scale, high-
resolution chest X-ray dataset that includes over 160,000
chest X-ray images from 67,000 patients, collected between
2009 and 2017 at Hospital San Juan de Dios in Spain.
The dataset features six different positional views and pro-
vides additional information on image acquisition and pa-
tient demographics. The reports associated with the images
are labeled with 174 radiographic findings, 19 differential
diagnoses, and 104 anatomical locations, which are orga-
nized into a hierarchical taxonomy and mapped to standard
Unified Medical Language System (UMLS) terminology.
Of these reports, 27% were manually annotated by trained
physicians, while the remaining annotations were generated
using a supervised method based on a recurrent neural net-
work with attention mechanisms. This dataset is notable for

being the first to include radiographic reports in Spanish.

ChestX-ray14 [13]: The NIH ChestX-ray14 dataset is a
hospital-scale collection comprising 112,120 frontal view
X-ray images from 32,717 unique patients. Labels for 14
common thoracic pathologies are extracted from the chest
X-ray radiological reports using natural language process-
ing techniques, with each image potentially having multiple
labels. The dataset provides an official patient-wise split for
training (86,000 images) and test (25,000 images) sets. In
our study, we use the ChestX-ray14 dataset both as a pre-
training source and as a target dataset. We follow the official
data split and report the mean AUC score over 14 diseases
for the multi-label chest X-ray classification task.

CheXpert [4]: The CheXpert dataset is a large-scale collec-
tion of 223,414 multi-view chest radiographs from 65,240
patients. The training images were annotated by an auto-
mated labeler to detect the presence of 14 thoracic diseases
in radiology reports, accounting for uncertainties with an
uncertainty label. The validation set comprises 234 images
from 200 patients, manually annotated by board-certified
radiologists for 5 selected diseases. For pretraining, we just
use the training samples based on the official split. We fol-

Downstream Tasks
Dataset Downstream task #Train/#Test/Data split Metric
ChestX-ray14 14 thoracic diseases classification 86K/25K/Official AUC
CheXpert 14 thoracic diseases classification 223K/234/Official AUC
Shenzhen CXR Tuberculosis classification 529/133/Random AUC
VinDr-CXR 14 thoracic diseases classification 15K/3K/Official AUC
SIIM-ACR Pneumothorax segmentation 8K/2K/Random Dice
RSNA Pneumonia Pneumonia detection -/2709/Random Precision
COVIDx COVID-19 classification 29633/400/Official Accuracy
JSRT Lung nodule classification 197/50/Random AUC
ChestX-Det 13 thoracic diseases classification 3K/553/Official AUC
ChestX-Det 13 thoracic diseases segmentation 3K/553/Official IoU

Table 4. Summary of downstream tasks on which LeADER has been evaluated.
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low the official data split and report the mean AUC score
over 5 test diseases for the multi-label chest X-ray classifi-
cation task.

NIH Shenzhen CXR [5]: The NIH Shenzhen CXR dataset
includes 662 frontal-view chest X-rays, with 326 normal
cases and 336 showing Tuberculosis (TB) manifestations.
We randomly split the dataset into a training set (80%) and
a test set (20%). The AUC score for the Tuberculosis detec-
tion task is reported.

RSNA Pneumonia [12]: The RSNA Pneumonia dataset,
derived from the RSNA Pneumonia Detection Challenge
2018, consists of 30,000 frontal view chest radiographs
from the public National Institutes of Health (NIH) CXR8
dataset. This includes 16,248 posteroanterior views and
13,752 anteroposterior views, with a separate test set of
4,527 images. The annotations for this dataset were pro-
vided by 18 radiologists from 16 different institutions, in-
cluding 12 chest radiologists from the STR Specialty, with
an average of 10.6 years of experience (ranging from 3 to 35
years). The annotations include bounding boxes and are cat-
egorized as follows: 0 - Unknown, 1 - Pneumonia present,
2 - Pneumonia absent.

MIMIC-CXR [6]: MIMIC-CXR dataset is a large, pub-
licly available dataset that includes chest radiographs along
with their corresponding radiological reports. The dataset
comprises 377,110 images from 227,835 radiographic stud-
ies and offers image-level labels for 13 thoracic diseases,
which are derived from the radiology reports through the
use of two open-source labeling tools, NegBio and CheX-
pert. The images are split into 368,000 for training, 2,991
for validation, and 5,159 for testing in the official data split.
For our study, we leverage the MIMIC-CXR dataset for pre-
training the source model using the official training data.

VinDR-CXR [10]: The VinDR-CXR dataset consists of
36,096 posterior-anterior chest X-rays with image-level la-
bels assigned by expert radiologists for six conditions: lung
tumor, pneumonia, tuberculosis, other diseases, COPD, and
no finding. Additionally, the dataset includes bounding box
labels for 14 conditions such as Aortic enlargement, Atelec-
tasis, Calcification, Cardiomegaly, Consolidation, ILD, In-
filtration, Lung Opacity, Nodule/Mass, Other lesion, Pleural
effusion, Pleural thickening, Pneumothorax, and Pulmonary
fibrosis. For pretraining, we use only the training samples
based on the official split. For fine-tuning, we adhere to
the official data split and report the mean AUC score over
the six diseases for the image-level classification task and
the AUC over 14 diseases for the lesion-level classification
task.

ChestX-Det [7]: The ChestX-Det dataset comprises 3,578
chest X-ray images, each annotated with pixel-level seg-
mentation masks for 13 common thoracic conditions: at-

electasis, calcification, cardiomegaly, consolidation, diffuse
nodule, effusion, emphysema, fibrosis, fracture, mass, nod-
ule, pleural thickening, and pneumothorax. The official
dataset split includes 3,025 images for training and 553 im-
ages for testing. For the 13 thoracic segmentation task, we
report the Intersection over Union (IoU) score, while for
the lesion-level classification task, we report the AUC score
across the 13 diseases.

Node21 [11]: The Node21 public CXR training dataset is
a collection of frontal chest X-ray images specifically de-
signed for training and evaluating systems in both detec-
tion and generation tasks. The dataset includes a total of
4,882 frontal chest radiographs, sourced from four public
datasets: JSRT, PadChest, ChestX-ray14, and Open-I, all
of which permit remixing and redistribution of the images.
Out of these images, 1,134 are annotated with bounding
boxes around 1,476 nodules, while the remaining 3,748 im-
ages are negative samples, meaning they do not contain any
nodules. The annotations for the dataset were provided by
experienced chest radiologists.

TBX-11K [8]: The TBX-11K dataset consists of 11,200
chest radiographs, each meticulously annotated with bound-
ing boxes to identify tuberculosis (TB) areas. It categorizes
images into five distinct classes: Healthy, Sick but Non-
TB, Active TB, Latent TB, and Uncertain TB. Out of the
11,200 X-rays, there are 5,000 healthy cases and 5,000 sick
but non-TB cases. Additionally, there are 1,200 cases show-
ing manifestations of TB, with each chest radiograph repre-
senting a unique individual. Within these TB cases, there
are 924 instances of active TB, 212 cases of latent TB, 54
cases where both active and latent TB are present simulta-
neously, and 10 cases classified as uncertain, where the TB
type cannot be identified using current medical standards.
The official split of the TBX11K dataset is as follows: the
training set comprises 6,600 images, the validation set in-
cludes 1,800 images, and the testing set contains 2,800 im-
ages.

SIIM-ACR [15]: The SIIM-ACR dataset consists of 10,000
chest X-ray images and segmentation masks for Pneumoth-
orax disease, provided by the Society for Imaging Informat-
ics in Medicine (SIIM) and the American College of Radi-
ology. We randomly divided the dataset into training (80%)
and testing (20%) sets, and evaluated the segmentation per-
formance using the Dice coefficient score.

B. Implementation details

B.1. Pretraining settings

As summarized in Tab. 5, we trained LeADER using
900K samples collected from the training sets of 10 pub-
lic datasets [1, 4–8, 10–13], with the Swin transformer base



Training LeADER Settings
Backbone Sθ: Swin-B transformer
Heads hθD and hθA : 2-layers MLP with hidden-dim 2048
Input Resolution 224×224
Initialization Sθ: officially released ImageNet weights; hθD and hθA : random initialization
Loss LD and LA: Mean Squared Error (MSE)
Batch size 128 distributed across 4 Nvidia V100 GPUs
Augmentation Random affine transformation, horizontal flip, and color jitter

Optimization AdamW optimizer with learning rate 2e− 4
cosine annealing learning rate scheduler, warm-up epochs 10

Training 100 epochs with LD and 250 epochs with LD + LA

Table 5. Summary of pretraining settings

(Swin-B) [9] as the backbone of the student Sθ. The two-
layer MLP heads for hθD and hθA have a hidden dimen-
sion of 2048 and output dimensions of K = 1376 and
K = 2048 for the disease and anatomy heads, respectively.
For the disease expert TξD , we employ Google CXR-FM,
known for its proficiency in generating disease-related fea-
tures. For the anatomy expert TξA , we employ Adam [2],
which excels in generating anatomy-related features. It
should be noted that other suitable disease/anatomy expert
models can also be integrated into our framework without
constraint. During training, we optimize Sθ, hθD , and hθA

using the AdamW optimizer with a base learning rate of
2e − 4, 10 warm-up epochs, and cosine annealing learning
rate scheduler, while TξD and TξA are kept frozen. Mean
Squared Error (MSE) is used as LD and LA. Random affine
transformation, horizontal flip, and color jitter are used as
data augmentation. LeADER’s backbone (Swin-B model)
is initialized from the officially released ImageNet weights,
while both heads, hθD and hθA , are randomly initialized.
LeADER is trained using a batch size of 128 with 4 Nvidia
V100 GPUs. For 100 epochs, LeADER is trained using the
PadChest [1], ChestX-ray14 [13], CheXpert [4], NIH Shen-

zhen CXR [5], RSNA Pneumonia [12], MIMIC-CXR [6],
and VinDR-CXR [10] datasets with LD to develop an ini-
tial disease discrimination ability. Following this, for 250
epochs, LeADER is further enhanced by joint optimiza-
tion of LD and LA using both images and patches from
the VinDR-CXR, ChestX-Det, NODE21, and TBX11K [8]
datasets, enabling the model to capture rich entangled and
disentangled representations at both image and patch levels.

B.2. Fine-tuning settings

As summarized in Tab. 6, we utilize the backbone of
the pretrained student of LeADER (i.e., Sθ) for full trans-
fer evaluation. In transfer learning to classification tasks,
we take LeADER’s pretrained backbone and append a fully
connected layer to generate the task-specific classification
outputs; with batch size 32, we use SGD optimizer with
learning rate 1e − 2, decrease the learning rate with a co-
sine scheduler, and use standard data augmentation, en-
compassing random rotation, crop, and horizontal flip. In
transfer learning to segmentation tasks, we employ a Uper-
Net architecture [14], initializing the encoder weights with
LeADER’s pretrained backbone; with batch size 32, we use

Transfer Learning Settings
Input resolution 224×224

Augmentation cls1: random rotation, crop, and horizontal flip
seg1: random gamma, elastic, brightness contrast, optical & grid distortion

Optimization batch size: 32; optimizer: SGD; lr: 1e-2/1e-3 for cls/seg;
learning rate decay scheduler: cosine for cls/seg;

Architecture cls: Swin-B followed by a task-specific classification head
seg: UperNet with Swin-B encoder

Transferred model Student Sθ

Statistical Analysis Independent two-sample t-test at p = 0.05 level
1“cls” and “seg” denote classification and segmentation tasks, respectively.

Table 6. Summary of transfer learning settings



SGD optimizer with learning rate 1e− 3, decayed by a co-
sine schedule, and use standard data augmentation, encom-
passing random gamma, elastic, brightness contrast, opti-
cal and grid distortion. Following the standard evaluation
protocol [3], we perform end-to-end fine-tuning for all pa-
rameters of the target models across all downstream tasks.
We strive to optimize each downstream task with the most
effective hyperparameters. Moreover, we employ early-
stopping using 10% of the training data as the validation
set. We use input size 2242 for all downstream tasks. Clas-
sification and segmentation performances are measured by
the AUC (area under the ROC curve), and mean Dice co-
efficient metrics and IoU (Intersection over Union) metrics,
respectively. We run each downstream model at least five
times and report statistical analysis using an independent
two-sample t-test.

C. Computational efficiency

LeADER uses a shared student backbone for both
anatomy and disease branches, with lightweight learning
heads for each branch. Additionally, the teacher models re-
main frozen during training. As a result, LeADER does
not impose additional computational demands compared to
the baselines and is even less resource-intensive than multi-
task methods like DiRA and PCRL, which require substan-
tial negative pairs comparisons for their contrastive learning
objectives.

D. Ethical considerations

AI in medicine is still in an early stage. Hence, any com-
mercial deployment of the models presented in our research
study should not proceed without sufficient evaluations in
real-world clinical settings.
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