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A. Gaussian kernel’s standard deviation

In a realistic training-free open-vocabulary scenario,
where additional data access is restricted, there should be
no validation set available for hyperparameter tuning. Con-
sequently, it is crucial for training-free methods to operate
effectively without such procedures. In our approach, we
introduce a hyperparameter denoted as ω, representing the
standard deviation of the Gaussian kernel used in Eq. (10),
which we set to 5 in our experiments. In this section, we
detail the heuristics guiding this choice, enabling us to de-
termine this value without the need for fine-tuning.

For a patch located at µ, the Gaussian kernel increases
its attention logits by 1 at µ and by lesser values at neigh-
bouring patch locations. Our choice of ω is based on the
number of neighbouring patches whose attention logits are
modified by more than a threshold ε . To achieve this, we
express:
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Considering Eq. (20), neighbouring patches for which µ’s
attention logits are increased by at least ε are positioned
within of a circle centered on µ with a radius of ω

↓
→2 ln ε .

For instance, with ω = 5, patch µ’s attention to 37 patches
gets a logit increase of at least 0.8 as illustrated in Fig. 4.
Table 5 displays the value of this heuristic measure
for ω ↔ {1, 2, . . . , 10} and ε ↔ {0.7, 0.8, 0.9}. Besides,
CLIP [32] has been trained on 224 ↗ 224 pixel images,
meaning the ViT-B/16 backbone operates on 14↗14 patches
for each image. Based on this fact and considering the val-
ues provided in Tab. 5, we opted for ω = 5 in our experi-
ments to maintain a balance, i.e., to have neither too small
nor too large field of attention. It is worth noting that ε is
defined solely for the purpose of the described heuristic and
does not play a role in our approach. In other words, there
is no ε value to fine-tune in our approach.

Although we employed a heuristic measure to determine
ω, we provide in Fig. 5 the impact of varying ω values on

Figure 4. Illustrative example of Eq. (20). The attention logits
of the center point to the points within the depicted circle are in-
creased by at least ω . Example generated for ε = 5 and ω = 0.8.

Table 5. Proposed heuristic measure for determining ε value.

For 3 values of ω and 10 values of ε, the table provides the number
of patches that patch µ’s attention logits to them is increased by
more than ω . It is important to note that these values are derived
based on an infinite grid of patches, while in practice, these num-
bers could be less depending on the window size and µ’s position.

ω ε = 0.7 ε = 0.8 ε = 0.9

1 1 1 1
2 9 5 1
3 21 13 5
4 37 21 9
5 57 37 21
6 81 49 21
7 109 69 37
8 145 89 45
9 177 113 57
10 221 137 69

test set performance. Please note that these experiments
were conducted after deciding to use ω = 5, and whose



goal is to demonstrate that i) our heuristic approach to find
ω provides indeed a good value; and ii) the performance
across different datasets is not strongly sensitive to the hy-
perparameter ω.

B. Visual examples

Additional visual examples can be found in Fig. 6 for
PASCAL Context (59) [29], and in Fig. 7 for COCO-
Object [5,23]. Upon reviewing the images in Fig. 6, we can
observe that SCLIP [38] often encounters difficulties in seg-
menting objects wholly and finding their boundaries (e.g.,
rows 1, 2, 4, and 8). We attribute this problem to SCLIP’s
failure to consistently incorporate information from sur-
rounding patches. Similar observations can be made for the
first four rows of Fig. 7. However, an interesting minute dis-
tinction between the methods emerges in the final row of the
figure. Notably, the pixels representing the cat’s eyes differ
significantly from those of its skin, resulting in SCLIP fail-
ing to segment them as the same class. In contrast, NACLIP
attentively considers the surrounding context of the eyes, re-
sulting in accurate segmentation.
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Figure 5. Ablation study on the impact of ε. We have provided results for both cases of using and not using post-processing, revealing
consistent trends across both cases.



Figure 6. Additional visual examples (segmentation maps) from PASCAL Context (59) [29] for CLIP [32], SCLIP [38], and our
method.



Figure 7. Additional visual examples (segmentation maps) from COCO-Object [5, 23] for CLIP [32], SCLIP [38], and our method.
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