Supplementary Material for
Pay Attention to Your Neighbours:
Training-Free Open-Vocabulary Semantic Segmentation

A. Gaussian kernel’s standard deviation

In a realistic training-free open-vocabulary scenario,
where additional data access is restricted, there should be
no validation set available for hyperparameter tuning. Con-
sequently, it is crucial for training-free methods to operate
effectively without such procedures. In our approach, we
introduce a hyperparameter denoted as o, representing the
standard deviation of the Gaussian kernel used in Eq. (10),
which we set to 5 in our experiments. In this section, we
detail the heuristics guiding this choice, enabling us to de-
termine this value without the need for fine-tuning.

For a patch located at p, the Gaussian kernel increases
its attention logits by 1 at p and by lesser values at neigh-
bouring patch locations. Our choice of o is based on the
number of neighbouring patches whose attention logits are
modified by more than a threshold 7. To achieve this, we
express:
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Considering Eq. (20), neighbouring patches for which p’s
attention logits are increased by at least 7 are positioned
within of a circle centered on p with aradius of o/ —21n 7.
For instance, with o = 5, patch p’s attention to 37 patches
gets a logit increase of at least 0.8 as illustrated in Fig. 4.
Table 5 displays the value of this heuristic measure
for 0 € {1,2,...,10} and 7 € {0.7,0.8,0.9}. Besides,
CLIP [32] has been trained on 224 x 224 pixel images,
meaning the ViT-B/16 backbone operates on 14 x 14 patches
for each image. Based on this fact and considering the val-
ues provided in Tab. 5, we opted for 0 = 5 in our experi-
ments to maintain a balance, i.e., to have neither too small
nor too large field of attention. It is worth noting that 7 is
defined solely for the purpose of the described heuristic and
does not play a role in our approach. In other words, there
is no 7 value to fine-tune in our approach.

Although we employed a heuristic measure to determine
o, we provide in Fig. 5 the impact of varying o values on
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Figure 4. Illustrative example of Eq. (20). The attention logits
of the center point to the points within the depicted circle are in-
creased by at least 7. Example generated for 0 = 5 and 7 = 0.8.

Table 5. Proposed heuristic measure for determining o value.
For 3 values of 7 and 10 values of o, the table provides the number
of patches that patch p’s attention logits to them is increased by
more than 7. It is important to note that these values are derived
based on an infinite grid of patches, while in practice, these num-
bers could be less depending on the window size and p’s position.

o 7=07 7=08 71=09
1 1 1 1
2 9 5 1
3 21 13 5
4 37 21 9
5 57 37 21
6 81 49 21
7 109 69 37
8 145 89 45
9 177 113 57
10 221 137 69

test set performance. Please note that these experiments
were conducted after deciding to use o = 5, and whose



goal is to demonstrate that i) our heuristic approach to find
o provides indeed a good value; and ii) the performance
across different datasets is not strongly sensitive to the hy-
perparameter o.

B. Visual examples

Additional visual examples can be found in Fig. 6 for
PASCAL Context (59) [29], and in Fig. 7 for COCO-
Object [5,23]. Upon reviewing the images in Fig. 6, we can
observe that SCLIP [38] often encounters difficulties in seg-
menting objects wholly and finding their boundaries (e.g.,
rows 1, 2, 4, and 8). We attribute this problem to SCLIP’s
failure to consistently incorporate information from sur-
rounding patches. Similar observations can be made for the
first four rows of Fig. 7. However, an interesting minute dis-
tinction between the methods emerges in the final row of the
figure. Notably, the pixels representing the cat’s eyes differ
significantly from those of its skin, resulting in SCLIP fail-
ing to segment them as the same class. In contrast, NACLIP
attentively considers the surrounding context of the eyes, re-
sulting in accurate segmentation.
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Figure 5. Ablation study on the impact of 0. We have provided results for both cases of using and not using post-processing, revealing
consistent trends across both cases.
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Figure 6. Additional visual examples (segmentation maps) from PASCAL Context (59) [29] for CLIP [32], SCLIP [38], and our
method.
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Figure 7. Additional visual examples (segmentation maps) from COCO-Object [5,23] for CLIP [32], SCLIP [38], and our method.
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