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Method FID↓ Penetrate↓ Float↓ Skate↓
MDM [3] 0.544 11.291 18.876 1.406
PhysDiff [4] 0.433 0.998 2.601 0.512
ReinDiffuse(Ours) 0.385 0.000 1.126 0.363

Table 1. Text-to-motion results using PhysDiff’s metrics on Hu-
manML3D [1]. ↓ means closer to real is better. Bold indicate the
best results.

Quantitative Comparison using PhysDiff’s Metrics. In
Table 1, we present the quantitative comparison results us-
ing PhysDiff’s metrics on the HumanML3D. We demon-
strate superior performance in these indicators compared to
PhysDiff. PhysDiff’s metrics mainly focus on three physi-
cal issues including Penetrate, Float and Skate. For ground
penetration (Penetrate), the distance between the ground
and the lowest body mesh vertex below the ground is calcu-
lated. For floating (Float), the distance between the ground
and the lowest body mesh vertex above the ground is com-
puted. To account for geometry approximation, both Pen-
etrate and Float have a 5 mm tolerance. For foot sliding
(Skate), foot joints that make contact with the ground in
two consecutive frames are identified, and their average hor-
izontal displacement within these frames is calculated.

Method FID↓ R-Precision↑ Skate ratio→ Float (m)→ Penetrate (m)↓ Clip (m)↓
Real 0.002 0.797 0.057 0.704 0.000 0.000
MDM [3] 0.544 0.611 0.102 1.757 0.048 0.014
Ours(w/o RL) 0.423 0.608 0.078 1.261 0.031 0.009
Ours(w/o IS) 0.428 0.613 0.069 0.911 0.016 0.005
Ours 0.385 0.622 0.058 0.711 0.000 0.000

Table 2. Ablation studies on HumanML3D [1]. “IS” denotes Im-
portance Sampling. “RL” denotes Reinforcement Learning.

Ablation Studies on The Effect of Importance Sam-
pling. In reinforcement learning training, we use impor-
tance sampling techniques with the initialization of a pre-
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trained model. The pretrained policy is handling explo-
ration, while the RL policy utilizes the exploration rewards
for updates. To validate the effectiveness of this strategy, we
conduct experiments on vanilla reinforcement learning, as
shown in Table 2. Specifically, vanilla reinforcement learn-
ing employs a single RL policy responsible for both explo-
ration and exploitation. From the experimental results, it
is evident that our reinforcement learning strategy achieves
better physical fidelity and motion quality. This superior
performance is due to its effective separation of exploration
and exploitation in reinforcement learning scenarios, lead-
ing to better adaptability and efficiency.
Ablation Studies on The Effect of using Reinforcement
Learning. In Table 2, we also investigate supervised-based
fine-tuning without using reinforcement learning. As pre-
viously mentioned, our reward function is not directly dif-
ferentiable, and therefore, we employ the masked loss for
supervised fine-tuning. The experimental results demon-
strated that using reinforcement learning is superior to su-
pervised fine-tuning. Our physical rewards are calculated
without GT measurements for motion plausibility, making
gradient-based learning difficult. The success of RLHF [2]
also demonstrate the advantage of enhancing the model’s
alignment capabilities on probability outputs using Rein-
forcement Learning.
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