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Figure 1. Hyperparameter analysis. Result of the grid search for
prompt pool size and length, Left: average accuracy ↑ (%), Right:
tuning parameter ratio ↓ (%).

Table 1. Variance on accuracy. Average and standard deviation
of accuracy for 5 trials

Method
CIFAR-100 B0-Inc10 ImageNet-R B0-Inc20

Avg-Acc Last-Acc Avg-Acc Last-Acc

L2P 88.09± 1.01 82.82± 1.52 77.66± 0.73 72.36± 0.67
DualPrompt 86.44± 1.16 80.94± 1.27 74.72± 0.29 68.37± 0.72
CODA-Prompt 90.78± 0.72 86.36± 0.78 79.77± 0.62 74.99± 0.41
I-Prompt (Ours) 91.63± 0.39 87.11± 0.44 80.21± 0.78 75.43± 0.44

A. Hyperparameter analysis

Figure 1 presents the average accuracy and number
of training parameters obtained through grid search with
prompt pool sizes [10, 50, 100, 150] and prompt pool
lengths [2, 4, 6, 8]. The hyperparameters of our method in-
clude the prompt pool size and prompt length. The prompt
pool size represents the total number of prompts, and the
prompt length denotes the number of prompts that are added
to the image token. The prompt is separately applied to the
self-attention key and value, making the prompt pool length
twice the prompt length. To strike a balance between av-
erage accuracy and the number of training parameters, we
empirically selected a prompt pool size of 100 and a prompt
length of 2. Our method also achieves a high performance
of 90.87% with only 0.22% of the training parameters, sim-
ilar to those of L2P [7] and DualPrompt [6].

Figure 2. clustering result. Above: Input images, Below: Image
token clustering results for first layer embedding.

Table 2. Effect of Prompt location. Average accuracy (%) com-
parison based on prompt location on CIFAR-100 B0-Inc10.

Lower layers (1-5) Middle layers (4-8) Higher layers (8-12)

91.75 91.62 87.98

B. Variance on accuracy

We conducted our experiment following previous
works [3,5,10] with a random seed of 1993. In Table 2, we
present the results of five trials using shuffled class orders
with random seeds from {0, 10, 20, 30, 40}. We achieved
the highest average performance on both CIFAR-100 and
ImageNet-R across five trials. Additionally, we achieved
the lowest variance in CIFAR-100 and the second-lowest
variance in final accuracy for ImageNet-R.

C. Effect of prompt location

Previous studies [2, 9] demonstrate that the representa-
tion capability of deep learning models is more pronounced
in higher layers. Therefore, while applying prompts to
higher layers might seem appropriate to leverage the rep-
resentation of model, we show through empirical investiga-
tion and Figure 2 that the pre-trained model also possesses
significant representation and classification capabilities in
lower layers. Since prompts change the overall output by al-
tering the input or layers, we apply prompts to the lower lay-
ers for plasticity. we present the performance of the prompts
according to their application location in Table 2.
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Figure 3. Performance on various task distribution. We report
the final accuracy in the uniform setting, representing the task-
balanced scenario, and in three distinct task-imbalanced scenarios.

D. Various task distribution
In Figure 3, we present the last accuracy across a variety

of task distributions to demonstrate that our task-agnostic
method consistently provides robust performance for each
distribution. We set up the experiments with four differ-
ent task distributions: decreasing, uniform, increasing, and
fluctuating, according to the number of classes per task. The
uniform distribution has a uniform number of classes per
task and is equal to B0-Inc20. The decreasing distribution
has a decreasing number of classes per task and is equal
to B0-Inc(30-5t). The increasing distribution has classes
per task increase and is equal to B0-Inc(10+5t). Finally,
the fluctuating distribution has increasing and decreasing
classes per task and has 10,30,5,40,15 classes for each task.
In experiments with uniform and decreasing task distribu-
tions, L2P [7], DualPrompt [6], and CODA-Prompt [4]
demonstrate high performance levels; however, their ef-
fectiveness diminishes in scenarios involving increasing or
fluctuating distributions. It is highly optimized for the initial
task during the prompt selection process, resulting in high
performance when the number of initial training classes
is large, but due to task dependency, the final accuracy
changes significantly as the task changes. On the other
hand, the proposed method showed equivalent performance
in all experiments. This shows that our method is not task-
dependent by fully exploits information about the classes,
making it task agnostic.

E. Random increase scenario
As a further task imbalance scenario, we report the task-

wise accuracy of recent continual learning methods in Fig-
ure 4 for a random increase scenario with dynamically
changing incremental steps. Each task is assigned a num-
ber of classes generated from the same random seed, and
the histogram below shows the distribution of classes per
task. Unlike the fluctuation scenario, it does not ensure
fluctuations, but is randomly seeded to validate robustness.

Figure 4. Task-wise accuracy in random increase scenario. We
report the performance of the prompt-based method in a random
increase scenario. The line plot and bar plot show the accuracy
and the distribution of classes per task, respectively.

In experiments on random increase scenario, we observe
a trend that as the number of tasks increases, the perfor-
mance gap between our method and the comparison meth-
ods also widens. This trend highlights the effectiveness of
our task-agnostic approach, particularly in addressing the
existing challenge where task prediction becomes more dif-
ficult with an increasing number of tasks.

F. Task-wise accuracy

We further report the task-wise accuracy of recent con-
tinual learning methods [4, 6, 7] in Figure 5. In this experi-
ment, we observe a trend where as the number of tasks in-
creases, the performance gap between our method and the
comparison methods also widens. This trend shows that we
achieve our goal of addressing the performance decrease as
task prediction becomes more difficult. Moreover, since the
performance gain grows with the number of tasks, our ap-
proach has a large advantage in final accuracy over average
accuracy.

G. Effect of pre-trained model

We show the results of the ViT-B/16 pre-trained on
ImageNet-21k in Tables 3, 4 and the results of the ViT-L/16
in Tables 5, 6 to confirm the performance improvement ac-
cording to the architecture of the pre-trained model and the
pre-training data. Our method achieves the highest perfor-
mance in most results even with models utilizing extensive
pre-training data and larger models. We observe consistent
trends, similar to previous experiments, showing significant
performance gains in scenarios with many tasks and task
imbalanced scenarios. By experimenting with variations in
pre-trained models, we demonstrate consistent performance
improvements of the proposed method from both the model
and data perspectives.



Figure 5. Task-wise accuracy on CIFAR-100. We report the performance of prompt-based methods in task-imbalanced and balanced
scenarios. The mask with purple diamonds represents the upper bound of performance achieved through joint-training.

Table 3. Comparison results (%) in task-imbalanced scenario on ImageNet-R and CIFAR-100. Average and final accuracy on a
ViT-B/16 pre-trained on ImageNet-21k. The best performance is in bold.

ImageNet-R CIFAR-100

Method B100-Inc5 B100-Inc10 B100-Inc20 B50-Inc2 B50-Inc5 B50-Inc10
Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc

L2P 61.73 49.95 66.49 57.55 71.37 64.38 66.95 49.92 81.89 71.55 87.85 82.68
DualPrompt 56.77 43.92 62.35 51.78 68.15 61.80 69.72 52.24 83.79 74.94 88.14 83.60
CODA-Prompt 66.12 58.69 68.49 61.00 72.55 67.23 71.24 56.89 82.34 72.52 88.55 82.49

I-Prompt (Ours) 69.05 59.56 73.78 68.07 76.68 73.07 72.64 59.25 84.87 78.23 90.21 86.49

Table 4. Comparison results (%) in task-balanced scenario on ImageNet-R and CIFAR-100. Average and final accuracy on a ViT-B/16
pre-trained on ImageNet-21k.

ImageNet-R CIFAR-100

Method B0-Inc10 B0-Inc20 B0-Inc40 B0-Inc5 B0-Inc10 B0-Inc20
Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc

L2P 74.38 67.80 76.07 69.85 77.29 72.90 85.00 78.16 89.53 84.95 90.93 86.67
DualPrompt 69.21 62.27 71.68 66.60 73.24 69.25 87.15 79.77 89.98 84.72 90.65 86.81
CODA-Prompt 74.97 68.10 79.30 73.28 79.76 74.70 87.58 80.06 91.46 86.74 92.79 88.91

I-Prompt (Ours) 76.88 69.47 79.58 73.38 80.53 75.65 89.76 83.31 92.33 88.04 93.07 89.55

Table 5. Comparison results (%) in task-imbalanced scenario on ImageNet-R and CIFAR-100. Average and final accuracy on a
ViT-L/16 pre-trained on ImageNet-1K.

ImageNet-R CIFAR-100

Method B100-Inc5 B100-Inc10 B100-Inc20 B50-Inc2 B50-Inc5 B50-Inc10
Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc

L2P 69.93 60.32 73.92 67.02 77.19 72.65 71.29 54.29 85.20 77.46 90.26 86.33
DualPrompt 67.20 59.87 71.35 65.97 74.25 70.25 76.43 64.80 87.24 82.54 89.97 87.15
CODA-Prompt 74.71 68.68 78.70 74.47 80.46 77.40 80.57 68.91 87.97 81.87 91.94 88.65

I-Prompt (Ours) 75.63 70.03 79.69 76.45 81.74 79.32 80.89 69.90 90.55 86.69 92.75 90.34

Table 6. Comparison results (%) in task-balanced scenario on ImageNet-R and CIFAR-100. Average and final accuracy on a ViT-
L/16 pre-trained on ImageNet-1K.

ImageNet-R CIFAR-100

Method B0-Inc10 B0-Inc20 B0-Inc40 B0-Inc5 B0-Inc10 B0-Inc20
Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc Avg-Acc Last-Acc

L2P 80.88 75.53 81.32 76.53 81.64 77.43 89.53 84.39 91.97 88.07 92.41 89.10
DualPrompt 77.02 70.78 77.84 72.18 77.65 73.90 87.89 82.74 90.05 85.36 91.33 87.48
CODA-Prompt 81.59 76.32 84.52 79.83 84.31 80.42 90.49 84.82 93.20 88.96 94.04 90.86

I-Prompt (Ours) 82.39 77.05 84.08 79.60 84.60 80.80 91.40 86.51 93.65 89.87 94.04 90.82



Table 7. Results (%) on Large-scale datasets. Landmark-v2-1k
indicates a subset of the Google landmark dataset v2, consisting
of 1000 randomly selected classes.

Method
Landmark-v2-1k B0-Inc100 Landmark-v2-1k B500-Inc100

Avg-Acc Last-Acc Avg-Acc Last-Acc

L2P 70.63 63.09 74.08 69.98
DualPrompt 73.51 65.33 75.07 70.03
CODA-Prompt 76.85 69.60 77.30 73.45
I-Prompt 78.37 71.63 80.51 76.42

Method
iNaturalist-19 B0-Inc100 iNaturalist-19 B500-Inc100

Avg-Acc Last-Acc Avg-Acc Last-Acc

L2P 60.11 61.43 67.16 66.44
DualPrompt 58.01 57.18 64.77 62.70
CODA-Prompt 62.80 62.89 62.79 61.21
I-Prompt 66.75 66.20 70.74 69.58

H. Results on Large-scale datasets
Prompt-based methods leverage pre-trained knowledge

to adapt to new tasks with a small number of parameters.
We present experiments on a subset of the Google Land-
mark Dataset v2 [8] and iNaturalist 2019 [1], consisting of
1000 classes, to verify that these methods work effectively
on large-scale datasets in Table 7. Our experiments show
that it is still effective for datasets with a large number of
classes, achieving the best performance on both 2 datasets
and 4 experiments.

• Google Landmarks Dataset v2 is a large-scalse dataset
for fine-grained instance recognition and image retrieval
containing various landmarks and famous places around
the world and contains 200k classes. The training and test
sets are divided into 4.1M and 118k images respectively,
and we use a subset of 1,000 classes for our experiments.

• iNaturalist 2019 is a subset of iNaturalist introduced
at the 2019 CVPR Fine-Grained Visual Categorisation
Workshop and consists of 1010 classes containing vari-
ous species of plants, animals, insects, etc. observed in
nature. The train set consists of 265,213 images and has
no annotations for the test set, therefore we split the train
set 8:2 to construct the training and test data.

I. Algorithm for I-Prompt
We demonstrate the procedure for continual learning and

the operation of I-Prompt in Algorithms 1 and 2.
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