
SoundLoc3D Supplementary Materials

1. More Discussion on LoFTR

A. Two Images from Different Viewpoints

B. Matching Points found by LoFTR

Figure 1. LoFTR extracted matching points visualization. A. Two
RGB images from different views. They contain large texture homoge-
neous area, including wall and ceiling. B. LoFTR manages to predict
dense matching points even on these texture homogeneous areas. We
utilize such characteristic to give robust sound source’s visual appear-
ance information to constrain the sound source to lie on an object’s
physical surface.

We adopt LoFTR [9] to extract RGB image feature,
which provides RGB informed sound source “on-the-
surface” appearance consistency constraint across mul-
tiviews. LoFTR [9] is a feature matching model that
provides “matching point” across RGB images, it natu-
rally fits for our situation because we depend on such
“matching point” to infer 3D sound source’s spatial local-
ization. Due to its coarse-to-fine learning strategy, LoFTR
is capable of retrieving matching points on both texture
homogeneous and texture discriminative area. We show
such an example in Fig. 1, from which we can clearly
see that dense matching point pairs are generated on the
texture homogeneous wall and ceiling area. It thus shows
LoFTR [9] can provide useful sound source clues for 3D
sound source position, regardless of the position’s visual
appearance. In Sec. 5.1, we show LoFTR RGB image
feature extractor generates better performance than Ima-
geNet pre-trained ResNet50 [4] image feature extractor.

2. Network Architecture
SoundLoc3D network architecture is given in Table 1.

The trainable parameter size of our network is 3.8 M. It is
worth noting that our proposed SoundLoc3D framework is
scalable. Its model complexity can be easily scaled up by
adding, for example, more Feature Mixer layers (Trans-
former encoder layer) or increasing the query embedding
size.

3. More Discussion on Dataset Creation
In the supplementary material, we provide the statistics

of the created large dataset in Table 2 w.r.t. different
physical object class. In this table, we can observe that
the “wall” and “ceiling” consist of the largest portion of
the dataset, which reflects the real scenario. We further provide some visualizations of the created dataset in Fig. 2, from which
we can have an intuitive understanding of how the dataset look like.

We followed the data creation method introduced in Sound3DVDet [6] to create the dataset. We skip the sampled position
when no depth map can be collected, so the dataset used by Sound3DVDet [6] and this paper is not exactly the same (the
reported Sound3DVDet result in this paper is slightly different from the result reported in the original Sound3DVDet paper).
We will release the data creation code and created dataset if this paper is accepted. It is worth noting that, although we placed
a 3D sound source on a specific physical object surface in the dataset we have created, the 3D sound sources can freely lie on
an arbitrary physical surface. In another word, the sound source placement is independent of physical objects.
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Table 1. SoundLoc3D network architecture illustration. In the Query Generator G, the 2D convolution kernel size is 3× 3 and the stride is 2.

Query Generator G: Input: [10, 256, 256]
Layer Name In-ch. Num. Out-ch. Num. feature size

Conv2D 10 32 [32, 128, 128]
Conv2D 32 64 [64, 64, 64]
Conv2D 64 128 [128, 32, 32]
Conv2D 128 256 [256, 16, 16]
Conv2D 256 512 [512, 8, 8]
Conv2D 512 256 [256, 4, 4]

Query Generator Output: [16, 256]

RGB Informed Feature Aggregation
LoFT input: [256, 64, 64]

Aggregation output: [16, 256]

Feature Mixer M
Transformer Layer Num 1

Token Num 16
Head Num 4
FFT Dim 1024
Output [16, 256]

Query Decoder D
Position Regression Head

Linear + BN + ReLU 256 128 [16, 128]
Linear 128 3 [16, 3]

Classification Head
Linear 256 class num [16, classnum]

Cabinet Ceiling Chair Door Table

view num = 3, source num = 5 view num = 4, source num = 5 view num = 5, source num = 4 view num = 5, source num = 5 view num = 5, source num = 3

view num = 3, source num = 5 view num = 4, source num = 5 view num = 3, source num = 1 view num = 3, source num = 2 view num = 3, source num = 2

Figure 2. SoundLoc3D experiment data visualization: We visualize the sample data we used in our experiment.

Table 2. Created Multiview Mic-Array and RGBD Dataset Summary w.r.t. each Physical Object Category.

Object Texture-homo. Texture-disc. Source Num. View Num.

wall 975 717 1-5 4
ceiling 727 614 1-5 4
table 464 461 1-5 4
door 712 702 1-5 4
cabinet 286 292 1-5 4
chair 100 222 1-5 4

sum 3264 3008 / /

4. More Details on Train and Test Configuration
During training, SoundLoc3D integrates the predictions (queries) from each single view by introducing global losses so that

SoundLoc3D gets optimized by both individual view prediction and crossview prediction consistency. During test, since we
adopt set prediction strategy to predict sound sources, the sound sources predicted from different views may be different from



each other in terms of predicted sound source 3D position class, we treat the set prediction from different views separately and
compare per-view prediction with ground truth separately to get the final evaluation metric.

5. More Experiment Result
We train all models with the same experimental setting presented in the main paper. We train all models three times

independently and report the mean value. We do not report the standard deviation because of the space limit in Table 7 and
Table 6. All the standard deviations are within 0.02.

5.1. More Ablation Study

Table 3. More Ablation Study Quantitative Result.

Methods mAP (↑) mAR (↑) mALE (↓)
SL3D Res50 0.488 ± 0.002 0.932 ± 0.020 0.520 ± 0.005
SL3D noDeepSup 0.487 ± 0.002 0.960 ± 0.001 0.391 ± 0.002
Ours Sound3DLoc 0.518 ± 0.010 0.999 ± 0.001 0.320 ± 0.001

In the main paper, we reported three ablation studies. We further report another two ablation studies in Table 3 to validate
the efficiency of SoundLoc3D.

1. LoFTR vs ResNet LoFTR [9] is better suited to our problem setup as it uses the projections of sound source locations
with visual consistency. We test the performance of replacing LoFTR with widely used ImageNet [3] pre-trained ResNet50 [4]
as image feature extractor. This variant, we call, SL3D Res50 leads to performance drop as well, which indirectly shows visual
consistency is a vital cue for sound source localization.

2. Without Deep Supervision. In Sound3DLoc, we jointly train both the initial queries and updated queries. We ablate
the performance without deep supervision. To this end, we remove the loss (Eqn. (14) in the main paper) added to the initial
queries (SL3D noDeepSup). From Table 3, we can see that removing deep supervision strategy leads to performance drop.

In summary, from all ablation studies, we can validate the necessity and importance of each component of our SoundLoc3D
framework design.

5.2. Quantitative Result w.r.t Sound Source Class

The quantitative result w.r.t. sound source class is given in Table 6. From this table, we can observe that 1) SoundLoc3D
stays as the best-performing method among all comparing methods and all SoundLoc3D variants used in ablation studies. 2)
As the training dataset size increases (so the acoustic scenes’ visual variation increases accordingly), the three comparing
methods have observed performance drop while our proposed SoundLoc3D maintains nearly the same performance. It thus
shows our proposed SoundLoc3D can better handle visual variation challenge.

5.3. Quantitative Result w.r.t Physical Object Class

The detailed quantitative result of our method w.r.t. physical object class is given in Table 7. We can observe from this table
that 1) our proposed SoundLoc3D outperforms all other SoundLoc3D variants across all physical object classes, in terms of
both mAP, mAR and mALE metrics. 2) SoundLoc3D and its variants achieve better performance on surface flat objects (such
as Table, Ceiling and Wall) than on surface uneven objects (Chair and Cabinet and Door). It thus shows that localizing and
classifying 3D sound sources on cluttered and uneven surface is a challenging task that requires more future work.

5.4. Comparing Methods with RGBD Image Input

All the 6 comparing methods SELDNet [1], EIN-v2 [2], SoundDoA [5], SoundDet [7], SALSA [8], SALSA-Lite [10] are
just based on Mic-Array signal input. One question that naturally arises is that what if feeding the RGBD images to these
Mic-Array based methods. To this end, we further run two kinds of extra experiments:

First, we simply combine the Mic-Array signal feature map (10× 256× 256) with its corresponding RGBD image (4×
256 × 256) for each single view. We then obtain a 13-channel 2D Mic-Array and RGBD feature map and feed its neural
network to localize and classify sound sources. It helps to test if directly concatenating RGBD can improve Mic-Array based
methods’ performance. We run such test on SELDNet [1], EIN-v2 [2], SALSA [8], SALSA-Lite [10] and Sound3DVDet [6],
we do not include SoundDoA [5] and SoundDet [7] because SoundDoA [5] and SoundDet [7] do not directly generate
fixed size Mic-Array based 2D feature (they propose learnable filter bank to directly learn from sound raw waveform). The



Table 4. Quantitative results of comparing methods w/o single view RGBD input.

Methods mAP (↑) mAR (↑) mALE (↓)
SELDNet [1] 0.103 ± 0.002 0.501 ± 0.001 0.923 ± 0.001
SELDNet [1] + RGBD 0.093 ± 0.001 0.489 ± 0.002 0.943 ± 0.001
EIN-v2 [2] 0.113 ± 0.002 0.607 ± 0.001 0.878 ± 0.001
EIN-v2 [2] + RGBD 0.101 ± 0.001 0.591 ± 0.001 0.899 ± 0.001
SALSA [8] 0.147 ± 0.002 0.722 ± 0.002 0.793 ± 0.003
SALSA [8] + RGBD 0.133 ± 0.002 0.701 ± 0.001 0.813 ± 0.002
SALSA-Lite [10] 0.130 ± 0.010 0.712 ± 0.003 0.810 ± 0.002
SALSA-Lite [10] + RGBD 0.107 ± 0.006 0.697 ± 0.002 0.831 ± 0.001
Sound3DVDet [6] 0.309 ± 0.010 0.998 ± 0.007 0.586 ± 0.009
Sound3DVDet [6] + RGBD 0.278 ± 0.009 0.892 ± 0.002 0.687 ± 0.007
SoundLoc3D 0.518 ± 0.010 0.999 ± 0.001 0.320 ± 0.001

quantitative result is given in Table 4, from which we can see that simply concatenating RGBD images to Mic-Array feature
leads to reduced performance for all comparing methods. It thus shows single view RGBD image does not present explicit 3D
sound source localization clue.

Second, we further follow SoundLoc3D pipeline to add multiview RGB-informed sound source position visual appearance
constraint to the comparing methods. Specifically, we replace SoundLoc3D’s Query Generator G with the comparing Mic-Array
based methods, and keep the remaining SoundLoc3D component the same (including the Feature Mixer M and Query Decoder
D). Such setting helps test the feasibility of our multiview RGBD feature aggregation scheme. The quantitative result is given
in Table 5, from which we can see that involving multiview RGB-D informed 3D sound source clue significantly improves
their corresponding performance (in terms of both mAP, mAR and mALE evaluation metric). It thus shows aggregating
cross-modal vision-informed clue for sound source localization and classification can dramatically improve the performance,
even though the sound source exhibits no visual entity.

Table 5. Quantitative results of comparing methods w/o multiview RGBD-Informed Sound Source Clue Aggregation.

Methods mAP (↑) mAR (↑) mALE (↓)
SELDNet [1] 0.103 ± 0.002 0.501 ± 0.001 0.923 ± 0.001
SELDNet + mvRGBD 0.208 ± 0.001 0.635 ± 0.001 0.852 ± 0.001
EIN-v2 [2] 0.113 ± 0.002 0.607 ± 0.001 0.878 ± 0.001
EIN-v2 + mvRGBD 0.145 ± 0.001 0.687 ± 0.001 0.822 ± 0.001
SALSA [8] 0.147 ± 0.002 0.722 ± 0.002 0.793 ± 0.003
SALSA + mvRGBD 0.289 ± 0.001 0.810 ± 0.001 0.700 ± 0.002
SALSA-Lite [10] 0.130 ± 0.010 0.712 ± 0.003 0.810 ± 0.002
SALSA-Lite + mvRGBD 0.269 ± 0.003 0.792 ± 0.001 0.732 ± 0.001
Sound3DVDet [6] 0.309 ± 0.010 0.998 ± 0.007 0.586 ± 0.009
Sound3DVDet [6] + mvRGBD 0.378 ± 0.006 0.999 ± 0.006 0.501 ± 0.005

5.5. More Qualitative Result

We provide more qualitative result visualization in Fig. 3. From this figure, we can clearly see that SoundLoc3D is capable
of accurately detect 3D sound sources under various room scenarios. It is better at handling both texture-homogeneous and
texture-discriminative situations.
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Table 6. Quantitative Result w.r.t. Each Sound Source Classes.
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Figure 3. More qualitative result: We visualize the localization result for one sound source in different visual scenes. We also provide the
visualization source code and data for more directive visualization.
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Table 7. Quantitative Result w.r.t. Each Physical Object Class.

Methods
Table Ceiling Door
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