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Abstract

We present extended results illustrating the control of
our image generator, both in terms of semantic and high-
level generative control. We additionally propose ex-
tended anonymization evaluation for the different prob-
lem settings. Namely, further results on standard single-
image anonymization, clinical single-image anonymization,
as well as the paired counterparts where two images of
the same person need to be anonymized consistently. We
also present illustrative examples of full-image anonymiza-
tion and more evaluation on downstream utility. Lastly, we
provide an ablation study of our proposed mirroring con-
trastive learning and the projection heads we learn on top
of the pretrained high-level encoders. We add the table of
contents below for more convenience in navigating between
the sections. All the supplementary results support what we
present in our main manuscript.
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(a) Independent change of semantic components

(b) Same as (a), with accumulation of changes from left to right

Figure 1. Semantic control with changes applied (a) indepen-
dently, and (b) cumulatively from left to right. The leftmost image
is the original, and from left to right we change both the structure
and texture of: background, face, eyes and hair.

1. Extended results of controllable synthesis

1.1. Semantic generative image control

We illustrate the disentangled semantic control capabil-
ities of our generator in Fig. 1. We show two examples in
Fig. 1a where each column has a different semantic change
relative to the leftmost column. In Fig. 1b, the changes are
accumulated from left to right, modifying in order the back-
ground, face, eyes and hair. This semantic control is due to
the architecture components from SemanticStyleGAN [12]
that extends on StyleGAN2 [7], and we show here that the
high-level control that we achieved with our training does
not block the semantic control.

1.2. High-level generative image control

We show the high-level attribute control that our model
achieves in Fig. 2 flexibly on pose and age. We also
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Figure 2. Illustration of high-level changes, on the same person.
The top row modifies the pose gradually, and the bottom row mod-
ifies age gradually. All other attributes remain unchanged.

(a) Independent change of high-level attributes

(b) Same as (a), with accumulation of changes from left to right

Figure 3. High-level attribute control, with changes applied (a) in-
dependently, and (b) cumulatively from left to right. The leftmost
image is the original, and from left to right we change: expression,
orientation, and age.

show independent modifications that we apply in expres-
sion, pose, and age in Fig. 3a. Fig. 3b shows similar results
but with the accumulation of high-level changes from left to
right, sequentially altering the person’s expression, orienta-
tion, and age. Lastly, we show in Fig. 4 that even within
pose we can disentangle yaw and pitch just with PCA. By
performing a PCA decomposition over the pose latent, we
can move in the direction of one component to modify yaw,
and the other component for controlling pitch. As shown in
the top part, we can linearly control the yaw (top left linear
curves) without affecting the pitch (top right flat curves).

Figure 4. We linearly vary the multiplier (x-axis) that shifts the
latent vector in the pose latent space along the yaw direction ob-
tained from PCA and observe with a 6DRepNet [3] the resulting
yaw (in the top left plot) and pitch (in the top right plot). We ob-
serve that the yaw linearly varies with our linear shift consistently
across all images, while the pitch remains stable, proving the high-
quality of our high-level attribute disentanglement. The bottom
part shows a corresponding sample image with varying yaw.

2. Extended anonymization evaluation

2.1. Standard single-image anonymization

We provide extended benchmarking results of stan-
dard single-image anonymization in Fig. 5 on the CelebA-
MaskHQ [9] test set and in Fig. 6 on the FFHQ [6] test set.
We compare against the two most commonly referenced
baselines CIAGAN [11] and FIT [2], and the three most
recent state-of-the-art methods that have public code avail-
able; DP2 [5], RiDDLE [10] and FALCO [1]. Our VerA re-
sults are the most photorealistic, consistently de-identifying
the person, even on this setting of standard single-image
anonymization.

We make a note regarding the results of FALCO [1]. As
mentioned in our main text, FALCO performs an adaptive
normalization that can lead to washed out images, or to odd
color artifacts if toggled off. We follow the authors’ default
setting and leave it activated in all our experiments. We
illustrate this normalization’s effect in Fig. 7.

2.2. Clinical single-image anonymization

We provide further benchmarking results on clinical
single-image anonymization in Fig. 9, using images from
our test set in FFHQ [6]. We compare against the same set
of methods, and include our clinical anonymization results
that preserve the mouth, eyes, and nose, respectively. We
also provide extended quantitative evaluation on semantic
preservation, conducted on FFHQ [6], in Table 1. All results
support the same claims we make in our main manuscript.
We further provide example results of competing methods,
to which we add our own blending procedure in Fig. 8.
Other methods do not directly tackle clinical anonymization



Input CIAGAN [11] FIT [2] DP2 [5] RiDDLE [10] FALCO [1] Ours

Figure 5. Extensive qualitative evaluation results on the standard single-image anonymization, benchmarking against the two most com-
monly referenced anonymization methods and the four most recent state-of-the-art anonymization approaches, on CelebAMaskHQ [9] test
samples. Our proposed VerA achieves good photorealistic results consistently while de-identifying the input image, outperforming the best
baselines even on this standard (non clinical) single-image anonymization task.



Input CIAGAN [11] FIT [2] DP2 [5] RiDDLE [10] FALCO [1] Ours

Figure 6. Extensive qualitative evaluation results on the standard single-image anonymization, similar to Fig. 5, but performed here on
FFHQ [6] test samples. Thanks to semantic-aware inversion, VerA can robustly anonymize images with occluding objects and various
accessories such as hats (first and last rows).



ℓ1 distance ↓ PSNR ↑ Semantic IoU ↑ Mean landmark offset ↓
Method Mouth Nose Eyes Mouth Nose Eyes Mouth Nose Eyes Mouth Nose Eyes

St
an

da
rd

CIAGAN [11] 38.53 31.73 54.00 14.20 15.76 11.60 0.53 0.53 0.01 17.50 21.26 43.88
FIT [2] 21.19 17.04 24.70 19.12 20.85 17.53 0.75 0.81 0.57 9.75 9.38 8.82
DP2 [5] 40.72 32.95 49.16 13.58 15.05 12.05 0.52 0.62 0.23 29.82 32.45 28.13
RiDDLE [10] 35.97 30.48 36.05 14.71 15.98 14.48 0.69 0.77 0.59 14.30 18.98 8.58
FALCO [1] 33.63 27.01 34.93 15.25 17.07 14.70 0.63 0.76 0.54 18.22 17.40 9.08
Ours 34.59 21.89 34.82 14.69 18.09 14.38 0.64 0.78 0.61 17.39 16.04 7.62

C
lin

ic
al Ours (mouth) 0.22 22.32 36.20 54.42 18.01 14.15 0.90 0.79 0.60 8.13 15.56 7.85

Ours (nose) 34.63 0.21 36.05 14.67 54.59 14.20 0.65 0.93 0.60 16.29 5.68 7.68
Ours (eyes) 34.91 22.17 0.35 14.61 18.03 50.72 0.64 0.78 0.76 17.84 16.58 6.25

Table 1. Semantic preservation results, in terms of content (ℓ1, PSNR) and area (IoU, landmarks), evaluated on FFHQ [6]. We note two
main observations: standard anonymization approaches destroy all semantic components that may need to be preserved in clinical images,
and our clinical anonymization successfully preserves the desired component while also flexibly modifying non-blocked components as
much as the baselines. Note: eye landmarks are key components in the alignment algorithm of FFHQ [6], which results in similar eye
landmarks across images, thus the generally lower average landmark offset.
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Figure 7. Illustration of the two settings of adaptive normalization
in FALCO [1]. The authors’ default corresponds to the top row,
and can lead to washed out final images. If toggled off, this setting
can lead to odd color artifacts like the blue in the first and last
column (bottom right corner between the face and the hair).

Method FID ↓ Bounding box ↑ Face detection ↑
FFHQ CelebAHQ MTCNN Dlib MTCNN Dlib

CIAGAN [11] 109.92 93.46 0.80 0.88 0.90 0.90
FIT [2] 89.47 95.98 0.91 0.94 0.98 0.99
DP2 [5] 23.41 51.89 0.87 0.88 0.96 0.97
RiDDLE [10] 69.93 66.95 0.90 0.91 1.00 1.00
FALCO [1] 48.03 53.35 0.89 0.91 0.99 1.00
Ours 13.79 51.60 0.91 0.92 0.97 1.00

Table 2. Downstream utility evaluation for photorealism/diversity
(FID [4]), bounding box IoU, and face detection rates
(MTCNN [14], Dlib [8]), which we compute over FFHQ [6] test
data. We achieve the best FID, and are on par with the best bound-
ing box IoU and the best detection scores.

with a semantic region-of-interest, and their results with our
added blending are less photorealistic. We also show our
own output when we do not perform our blending for illus-

Input CIAGAN [11] FIT [2] Ours
blended

DP2 [5] RiDDLE [10] FALCO [1] Ours
not blended

Figure 8. Best viewed zoomed in. We blend the mouth (of the
same sample shown in Fig. 5 of the main manuscript) for compet-
ing methods, which yields less photorealistic results as competi-
tors do not properly address semantic anonymization. We addi-
tionally show for illustration our own output without our region-
of-interest blending.

tration purposes.

2.3. Paired standard and clinical anonymization

We provide further examples of paired anonymization,
in both the standard and clinical setting, and comparing to
all benchmarks in Fig. 10 on a pair from the SiblingsDB
dataset [13]. We additionally provide images at higher res-
olution for illustrating a paired clinical anonymization ex-
ample in Fig. 12.

2.4. Full-image in-place anonymization

Fig. 14 shows numerous examples of full images that we
anonymize using VerA. These examples serve as an illustra-



Input CIAGAN
[11]

FIT
[2]

DP2
[5]

RiDDLE
[10]

FALCO
[1]

Ours
(mouth)

Ours
(eyes)

Ours
(nose)

Figure 9. Extensive qualitative evaluation results on the clinical single-image anonymization, benchmarking against the two most com-
monly referenced anonymization methods and the four most recent state-of-the-art anonymization approaches, on FFHQ [6] test samples.

tion of the application to full-scene images, aside from the
clinical use cases that our main manuscript focuses on.

2.5. Downstream utility evaluation

We repeat the downstream utility evaluation presented in
our main text on the FFHQ [6] set, and compile the results in
Table 2. We achieve the best photorealism and diverse dis-
tribution measured by FID, followed by DP2. As for bound-
ing boxes and face detection, we are on par with other state-
of-the-art methods, all achieving significantly high perfor-
mance. The results echo what we present and the conclu-
sions in our main manuscript.

3. Ablation experiments

3.1. Mirroring and projection heads ablation

We perform a simple ablation study over our proposed
contrastive mirroring strategy and over our projection heads
that are learned on top of each pretrained high-level en-
coder. We provide the results in Fig. 13. The training con-
trastive loss for the pose high-level attribute is shown in the
top plot. Each curve corresponds to training with our mir-
roring strategy and projection heads, as well as with the ab-
lation of each. We obtain the best convergence when both
components are included. This improved convergence re-
sults in improved high-level control, as illustrated visually
in the bottom part of the figure. In every row, we sample
multiple identities that have a fixed pose latent. Only the



Input Ours (standard) Ours (mouth) Ours (nose) Ours (eyes)

CIAGAN [11] FIT [2] DP2 [5] RiDDLE [10] FALCO [1]

Figure 10. An example pair taken from the SiblingsDB dataset [13] that we anonymize under the standard setting and the clinical setting
preserving the mouth, nose, and eyes respectively. We compare our results to those of the five benchmarks. Note that in this setting DP2
achieves good identity consistency within the pair. This is because of the highly standardized capture, and the fact that DP2 inpaints the
inside of the face conditioned on the outside, which in this setting is almost unchanged.

last row, training with both proposed strategies, consistently
achieves the same pose.

3.2. Prior-based blending and correction ablation

The effects of prior-based blending and correction are
hard to quantify, since evaluating the photorealism of im-
ages (or parts of images) is an open task, tackled only
through proxy metrics. We once again use FID [4], accom-
panied with the downstream utility metrics we compute us-
ing face detection models. We perform the ablation study
over the postprocessing on the standard anonymization task
and provide the results in Tab. 3. We also illustrate the sep-

arate and cumulative effects of both steps in Fig. 11, on a
sample from our validation set. Face detection models get
minimally affected by the changes since only local and low-
level features change through the postprocessing and image
structures stay mostly similar. We can observe the effects
of the postprocessing on FID values on CelebAHQ, but the
FID computation with respect to an external dataset (FFHQ,
in this example) fails to illustrate the changes in the images.
Such small changes are not significant enough to alter the
feature distributions with respect to another dataset.



Input No postprocessing Only correction Only blending Correction & blending

Figure 11. A sample from our ablation experiment over prior-based blending and correction. Prior-based blending fixes the border issues
between preserved and non-preserved regions of the image, whereas prior-based correction fixes occasional GAN artifacts and improves
texture. Neither step changes the overall structure of the image.

Input pair Ours (mouth preserved)

Figure 12. Our clinical paired-image anonymization preserving
the mouth of the input pair, shown in larger resolution than the
main manuscript for better illustration.

Postprocessing method FID ↓ Bounding box ↑ Face detection ↑
FFHQ CelebAHQ MTCNN Dlib MTCNN Dlib

No postprocessing 56.92 15.81 0.908 0.955 0.963 0.990
Only correction 57.86 14.03 0.908 0.956 0.966 0.994
Only blending 56.93 13.28 0.907 0.949 0.959 0.990
Correction & blending 57.89 12.49 0.908 0.952 0.962 0.990

Table 3. Effects of prior-based blending and prior-based correc-
tion, illustrated through a downstream utility evaluation for pho-
torealism/diversity (FID [4]), bounding box IoU, and face detec-
tion rates (MTCNN [14], Dlib [8]) computed over held-out test set
from CelebAMaskHQ. Results are comparable with Table 5 from
the main manuscript, although there exists a slight difference in
the metric for the complete pipeline, accounted by the hardware
differences in these two experiments.
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Figure 13. The top plot shows the training contrastive loss for the
pose high-level attribute, with our mirroring strategy and projec-
tion heads, as well as with the ablation of each component individ-
ually. The best convergence is achieved with both of our compo-
nents. The bottom part illustrates the resulting effect qualitatively.
Each row samples multiple identities with a fixed target pose, how-
ever, only the last row successfully achieves the same consistent
pose across all identities.



Figure 14. Sample facial anonymization results in full-scene images, all performed using our proposed VerA. VerA works on aligned faces,
therefore, we crop the aligned face from the full image as input and replace it by the anonymized face at the same location, following the
standard in-place anonymization procedure.
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