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A. Additional Background: Laboratory Mate-
rial Property Measurement

Apart from mobile devices, laboratory devices can mea-
sure spectral information under a constrained environment.
For example, the spectrophotometer [2] quantitatively mea-
sures the absorptance and reflectance distribution against
visible and infrared radiation wavelengths based on the
amount of light absorbed by the material [16, 20]. The
streak camera [4, 11] measures time-dependent temporal
point spread functions (TPSF) [13], which describe how
light is reflected, refracted, scattered, or absorbed by the
material. Additionally, femtosecond lasers [15] can mea-
sure the thermal conductivity and mechanical properties
of the material by emitting pulses of light and perform-
ing time-resolved measurements of temperature and laser-
induced deformations [8]. A spectrophotometer and a spec-
tral camera are two devices that measure spectral informa-
tion, but differ in their measurement capabilities. A spec-
trophotometer measures the amount of light absorbed or
transmitted by a sample at a single point or small area, mak-
ing it a precise tool for material characterisation and anal-
ysis in laboratory settings. In contrast, a spectral camera
captures spectral information for an entire scene, making it
useful for remote sensing and imaging applications. In the
main paper, the samples in the spectraldb [12] are measured
by a spectrophotometer, and samples in the ARAD 1K [3]
are measured by a spectral camera. We leverage both
datasets by matching the measurements described in the
Section Multi-Modal Fusion in the main paper.

B. Network Training

The training of MatSpectNet consists of three phases: 1.
the pre-training of the spectral recovery network S(x). 2.
the training of the physically-constrained recovery network
S(x), R(h). 3. the training of the material segmentation
decoder. We will illustrate all three components in this sec-
tion.

B.1. Data Preparation

We follow the dataset split method mentioned in [10] to
prepare both the LMD [17] and the OpenSurfaces [5]. The
models are monitored to choose the best parameters with the
validation set and the reported performances are evaluated
on the test set.

B.2. Pre-training of the Spectral Recovery Network

We selected the MST++ [6] as the spectral recovery net-
work S(x) to process the ARAD 1K RGB images, which
are normalised to a range of [0,1] using min-max normali-
sation. Specifically, for each channel in the RGB image, we
subtracted the minimum value and divided the result by the
range. The corresponding hyperspectral image remained
unchanged. Next, we randomly cropped the samples into
128 × 128 patches and augmented the dataset with ran-
dom vertical and horizontal flips. To optimise the network,
we choose the mean relative absolute error (LMRAE) [3]
and use the Adam optimiser with parameters α = 4e−4,
β1 = 0.9, and β2 = 0.999 where α is the initial learning
rate. We employ the cosine annealing learning rate sched-
uler with a minimum learning rate of 1e−6 and trained the
network for 400 epochs with a batch size of 4 per GPU. The
best model was selected based on its ability to produce the
minimum LMRAE calculated with the validation set.

B.3. Training of the Physically-Constrained Spec-
tral Recovery Network

This section outlines the methodology for training the
proposed physically-constrained spectral recovery network.
The pre-trained S(x) is loaded and tuned in this section. We
adopt the AdamW optimiser with an initial learning rate of
6e−5, and set the values of β1 and β2 to 0.5 and 0.999, re-
spectively. Additionally, we employ the linear learning rate
scheduler to adjust the learning rate during training. This
step is trained for 400 epochs and the parameters that pro-
duce the minimum Ltrans elaborated in Equation 1 from
the main paper are kept for material segmentation.
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Figure 1. Feature merging for material segmentation.

B.4. Training of the Material Segmentation Decoder

In the main paper, Figure 1 depicts the recovered hyper-
spectral image ĥ, which is processed with a multi-layer per-
ceptron (MLP) for material segmentation. In this section,
we provide a detailed figure of the overall architecture by
illustrating a material segmentation head, as illustrated in
Figure 1. The MLP is configured to generate 128-channel
features with hidden units of 64 channels. Recent studies
have proposed that for material segmentation tasks, utilizing
a combination of both material and contextual features, such
as features related to objects or scenes, can reduce segmen-
tation uncertainty and lead to improved performance [9,10].
As recovered hyperspectral images can provide reliable ma-
terial features, we have incorporated an additional encoder-
decoder segmentation network, namely the DBAT [9], to
extract contextual features from RGB images. The features
extracted from both the MLP and the DBAT contain 128
channels each. These features are combined through con-
catenation and passed into a convolutional layer equipped
with 3 × 3 kernels, resulting in the final material label pre-
dictions.

During the training of the segmentation head, the param-
eters of the spectral recovery network S(x) are fixed. To
augment the dataset, RGB images are randomly cropped
into patches with dimensions of 512 × 512 and randomly
flipped. The AdamW optimizer is utilised with an initial
learning rate of 8e−5, β1 set to 0.9, and β2 set to 0.999. The
cyclical learning rate scheduler [18] is applied to gradually
decrease the learning rate to 7e−7 over 400 epochs. The
parameters that achieve the highest Pixel Acc are chosen to
report the performance for each run.

C. Physically-Constrained Spectral Recovery
Experiments

This section analyses the configuration of the proposed
RGB transformation network, R(h), by validating the com-
ponents of the simplified camera model and visualising the

Figure 2. The loss decay curve of Ltrans with or without normal-
isation.

decay curve of Ltrans and the recovered sRGB images to
justify the model design and prepare for the material seg-
mentation experiments.

C.1. [0,1] Normalisation and Brightness Factor

This section presents the decay curve of Ltrans, which
is introduced in Equation 1 in the main paper. Two train-
ing configurations are compared, by normalising the RGB
images generated by R(h) into the range [0,1] or using a
trainable brightness factor. The objective of Ltrans is to as-
sess the quality of the recovered RGB images x̂m obtained
through the material data flow depicted in Figure 5 in the
main paper. The normalisation operation acts as an addi-
tional constraint in regularising the network R(h). It em-
phasises that the precise values of individual pixels are not
crucial. Instead, the focus is on maintaining the relative val-
ues and the range difference of pixel intensities. Since the
uniform brightness assumption works by scaling the pixels,
it can be redundant when the [0,1] normalisation is used,
which also scales the pixels by the range of the pixel val-
ues.

The decay curve of Ltrans provides valuable insights
into the impact of the normalisation operation on the train-
ing of R(h). As depicted in Figure 2, the inclusion of the
normalisation step in the training process has a significant
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noise level no σ noise σ ∈[0,0.001] σ ∈[0,0.002] σ ∈[0,0.005]

no ν noise 0.006174 0.005990 0.005947 0.005989
ν ∈[700,900] 0.008225 0.008305 0.008407 0.008775
ν ∈[3000,3500] 0.007437 0.007499 0.007609 0.008028
ν ∈[5000,5500] 0.007338 0.007398 0.007508 0.007928

Table 1. The converged Ltrans with different noise level configu-
rations.

impact on the convergence behaviour of R(h). When the
RGB images are normalised, the training of R(h) reaches a
convergence level of 0.02301 at epoch 71. In contrast, us-
ing brightness factor, it takes approximately 216 epochs to
achieve the same level of convergence. By utilising the nor-
malisation constraint, the training of R(h) becomes more
efficient. This indicates that scaling absolute pixel values is
more difficult than learning the range difference and relative
values.

C.2. Noise Level Tuning

This section tunes the noise level described in Section
Camera System Noise and Brightness in the main paper.
According to [7], the noise reduction process happens be-
fore the in-camera processing, by means of a high-pass fil-
ter. In the simplified camera model shown in Figure 2 in
the main paper, the noise level is tuned to omit the noise
reduction process, by minimising the Ltrans in Equation 1
in the main paper without the network-modelled in-camera
processing component. The evaluation with different noise
levels are shown in Table 1. In the first column where no
thermal noise is modelled, it is evident that the presence of
Poisson shot noise significantly degrades the quality of the
recovered RGB images, even when only a small amount of
Poisson noise is applied (corresponding to high noise level
ν). Therefore, for the subsequent experiments, the shot
noise is excluded, and the thermal noise level, denoted as
σ, is constrained within the range of [0, 0.002]. This range
represents the only configuration that surpasses the noise-
free scenario, ensuring the integration of noise effects while
omitting the noise reduction process.

C.3. In-camera Processing Network Justification

The loss term of Ltrans is shown in Figure 3. It con-
verges to 0.005550 at epoch 388, which is 6.68% lower
than the one without the in-camera processing network. The
visual comparison in Figure 4 illustrates the difference be-
tween the recovered sRGB images, denoted as x̂m, and their
corresponding ground truth images, denoted as xm. Though
the loss Ltrans converges well, and the images look almost
the same, the heatmap suggests that further improvements
can be made especially for glass regions, probably caused
by the uniform brightness assumption. There are two as-
pects that can be invested to improve the image quality.

Firstly, the field of spectral recovery remains an active

Figure 3. The loss decay curve of Ltrans with tuned noise levels
and in-camera processing.

area of research. Even with the use of a supervised dataset,
the current performance of the spectral recovery network in
generating hyperspectral images is not optimal. Through
the implementation of an improved spectral recovery net-
work, it is possible to achieve superior results by recovering
more accurate and detailed information in the hyperspectral
domain.

Secondly, the camera model incorporated in the net-
work R(h) may suffer from the uniform brightness assump-
tion, which does not hold in situations where multiple light
sources exist. To address this issue, it is recommended to
conduct experiments using more complex brightness esti-
mation methods, such as [1]. Moreover, it is possible to
build a dataset-independent camera model with raw-RGB
images instead of sRGB images. This adjustment allows
for a simple but realistic camera model that better captures
the transformation between hyperspectral and RGB images.
Moreover, by eliminating the need for an additional net-
work component to simulate the camera model, it is possi-
ble to streamline the image recovery process and potentially
achieve improved results.

C.4. Spectral Recovery Performance

Since there are no captured hyperspectral images in ma-
terial datasets, the spectral recovery network is quantita-
tively evaluated on ARAD 1K. As shown in table 2, with
the material dataset, the performance of the spectral recov-
ery network S(x) decays. This is expected since the train-
ing objective is changed from recovering hyperspectral im-
ages in ARAD 1K to material datasets. Luckily, the de-
cay curve of Ltrans in Figure 3 indicates that the quality
of recovered hyperspectral images in material datasets is
improved. Moreover, in Figure 5, with MatSpectNet, the
differences between xm and x̂m are smaller, supported by
the whiter heatmap colour, compared with directly using the
pre-trained MST++ [6].
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(a) Ground Truth
RGB xm

(b) Recovered RGB
x̂m

(c) Heatmap of |xm−
x̂m|

Figure 4. The visualisation of two pairs of sRGB and recovered
sRGB. The heatmap is measured by averaging the difference be-
tween normalised (range [0,1]) xm and x̂m across R, G, B chan-
nels. Pink means the difference is 0, and red means the difference
is 1.

model MRAE RMSE

MST++ 0.1645 0.0248
MatSpectNet 0.1774 0.0316

Table 2. The performance of the spectral recovery network S(x),
evaluated with metrics in [3].

(a) Ground Truth
RGB xm

(b) Heatmap of |xm−
x̂m| with MatSpect-
Net

(c) Heatmap of |xm−
x̂m|, with MST++ [6]

Figure 5. Heatmaps of recovered RGB images with MatSpectNet
or pre-trained MST++.

C.5. Gradient Magnitude of Recovered Hyperspec-
tral Images

The incorporation of hyperspectral images offers a
unique advantage in material segmentation tasks as they
capture the portion of light reflected by materials in the
scene. As reflectance is a fundamental characteristic of

(a) Bedroom Image (b) 360nm (c) 700nm

Figure 6. The gradient magnitude of the recovered hyperspectral
images.

materials, hyperspectral images provide vital discriminative
features in addition to conventional RGB images. To vali-
date the efficacy of hyperspectral images in material seg-
mentation, one approach is to examine whether pixels rep-
resenting the same material exhibit similar spectral profiles
within a scene. The gradient magnitude plots of the hyper-
spectral images at wavelengths 360nm and 700nm, as de-
picted in Figure 6, provide valuable insights in this regard.

For instance, in the bedroom image, at wavelength
360nm, the white quilt, pillow, and yellow headboard are
all composed of fabric materials. The gradient magnitude
plot shows no distinct boundaries, illustrating that hyper-
spectral images accurately capture reliable material prop-
erties. However, when analysing the painting on the wall
at wavelength 700nm, clear boundaries between the colour
spots emerge, potentially attributed to the diverse ingredi-
ents present in the painting. Similarly, the bed sheet reveals
distinct regions, where the material of the strips may differ
from the surrounding yellow fabric area. These observa-
tions underscore the challenges in annotating material seg-
ments and the complexities involved in defining appropriate
material categories.

The analysis of hyperspectral image gradients provides
compelling evidence for the potential of leveraging hyper-
spectral images in material segmentation tasks. The capac-
ity to capture distinct spectral profiles of materials aids in
accurately delineating material boundaries, thus offering a
valuable contribution to the advancement of material seg-
mentation methodologies. Furthermore, it highlights the
need for robust annotation techniques and the exploration of
innovative strategies for defining meaningful material cate-
gories in this challenging domain.

D. Training Analysis

D.1. Per-category Analysis

Table 3 displays the per-category performance of our
proposed MatSpectNet and other networks. Notably, our
model outperforms other models in eight categories, partic-
ularly those covering a small portion of the annotated sam-
ples, such as paper and plastic, as indicated by the numbers
next to the category names. This suggests that the recovered
hyperspectral images provide informative material features
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Model DBAT ResNet-152 ResNeSt-101 EfficientNet-B5 Swin-t CAM-SegNet-DBA

Asphalt 88.66 ± 0.72 88.66 ± 0.17 94.35 ± 0.27 82.17 ± 2.80 91.83 ± 1.09 89.87 ± 1.94
Ceramic 68.31 ± 1.31 65.29 ± 3.19 62.86 ± 0.67 73.34 ± 0.42 75.35 ± 0.42 75.01 ± 0.64
Concrete 66.90 ± 1.07 50.89 ± 1.67 60.53 ± 2.00 59.36 ± 2.98 57.42 ± 4.88 69.20 ± 2.81

Fabric 93.14 ± 0.16 85.53 ± 0.22 86.420 ± 0.92 85.33 ± 0.20 88.71 ± 0.50 90.79 ± 0.43
Foliage 95.35 ±0.12 93.55 ± 0.33 91.25 ± 1.16 88.21 ± 0.32 95.57 ± 0.45 94.04 ± 0.79
Food 93.27 ± 0.22 90.27 ± 0.22 94.96 ± 0.34 95.84 ± 0.14 92.51 ± 0.83 95.19 ± 0.24
Glass 73.27 ± 0.67 72.58 ± 2.50 68.33 ± 0.34 77.83 ± 0.94 77.95 ± 0.99 84.88 ± 1.11
Metal 79.99 ± 0.51 75.35 ± 0.94 80.66 ± 0.34 76.67 ± 0.28 81.54 ± 1.36 81.83 ± 0.48
Paper 73.83 ± 0.67 64.52 ± 2.87 71.14 ± 1.99 77.21 ± 0.13 63.05 ± 1.90 66.48 ± 1.43
Plaster 71.43 ± 0.71 68.01 ± 0.53 78.76 ± 0.62 73.11 ± 0.64 78.12 ± 1.90 72.37 ± 1.03
Plastic 50.62 ± 1.45 34.87 ± 1.21 36.07 ± 3.42 39.59 ± 0.64 51.64 ± 1.31 52.07 ± 2.28
Rubber 82.61 ± 1.01 77.08 ± 3.61 79.57 ± 1.62 69.73 ± 0.29 83.48 ± 0.67 81.63 ± 1.79

Soil 84.25 ± 0.50 73.27 ± 1.63 73.15 ± 2.67 79.73 ± 0.55 76.89 ± 1.11 80.39 ± 1.73
Stone 86.94 ± 0.95 69.66 ± 1.42 52.12 ± 0.93 70.07 ± 0.76 73.05 ± 1.92 60.73 ± 2.76
Water 97.12 ± 0.10 95.49 ± 0.33 97.54 ± 0.28 95.30 ± 0.32 95.78 ± 0.70 94.95 ± 0.69
Wood 90.53 ± 0.37 76.05 ± 1.08 76.71 ± 1.23 86.69 ± 0.24 82.03 ± 1.11 87.63 ± 0.98

PixelAcc 86.85 ± 0.08 80.68 ± 0.11 82.45 ± 0.20 83.17 ± 0.06 84.71 ± 0.26 86.12 ± 0.15
MeanAcc 81.05 ± 0.28 73.87 ± 0.25 75.31 ± 0.29 76.91 ± 0.06 79.06 ± 0.46 79.85 ± 0.28

Table 3. Per-category performance analysis. The networks are trained five times to report the uncertainty.

that enhance performance, even when the number of anno-
tations is limited.

D.2. Filter Analysis

The main paper introduces filters that aggregate spectral
information using a weighted sum. These filters are de-
signed to behave similarly to RGB filters, where the filter
values represent the importance of each wavelength.

The spectral attention module computes spectral fil-
ters using an attention mechanism applied to the chan-
nels of the recovered hyperspectral images. As depicted
in Figure 6 in the main paper, the hyperspectral image
h ∈ Rn bands×H×W is reshaped and permuted into h′ ∈
RHW×n bands to enable the application of self-attention to
the spectral channels. Specifically, the spectral attention
module employs linear projection to generate the query,
key, and value matrices Q,K, V ∈ RHW×n bands from the
n bands hyperspectral image h′ [6]. Then the self-attention
output A ∈ RHW×n bands is acquired with Equation 1:

A = V softmax(KTQ) (1)

where the softmax function is applied to the spectral chan-
nel. The output A is then scaled to the range [0,1] with the
min-max normalisation to align its physical meaning with
the RGB response curves, which represent the sensitivity to
each wavelength. In practice, we use n spectral attention
modules in parallel to obtain n filters and construct an n-
channel material image that contains dominant information
for the segmentation task. The filters are analysed in the
supplementary material.

In order to gain a better understanding of how these fil-
ters work, Figure 7 plots two of the filter weights for each
wavelength alongside the RGB response functions. The fil-
ters show wavelength ranges where the weights are larger

than others, indicating the wavelengths that the network de-
pends on, such as the range between 420 and 560 nm for
filter 2. Moreover, unlike the RGB response functions, the
learned filters can have more than one important region, as
demonstrated by filter 1. This finding suggests that aggre-
gating both short and long-wavelength information in the
same filter is beneficial for material segmentation. Further
investigation into the optimal weighting of different wave-
length ranges can be a potential avenue for future research.
Lastly, it is worth noting that the learned filters in the net-
work exhibit a tendency to assign weights close to 0 for
frequencies that are near those with large weights, such as
490nm and 550nm. This behaviour suggests that the train-
ing process eliminates frequencies that do not contribute
significantly to material segmentation. One possible expla-
nation for this phenomenon is that the spectral profiles often
exhibit flat regions, as depicted in Figure 8. The filters ef-
fectively encode the spectral curve by sampling a few points
from these flat regions and primarily focusing on the regions
where the intensity varies.

D.3. Quantitative Analysis

This section presents another segmentation visualisation
in Figure 9. The table shown in the image lacks distinguish-
able texture, making it difficult even for humans to deter-
mine its material. As a result, in all other five models, the
segmented images appear messy near the table region. The
DBAT model struggles to distinguish between plaster and
wood, whereas models such as Swin-t [14] and Efficient-
Net [19] are affected by reflected light and incorrectly rec-
ognize parts of the table as ceramic or glass. This indicates
that RGB image does not provide reliable visual features for
material segmentation task. In contrast, our MatSpectNet
model avoids such noisy recognition and confidently iden-
tifies the table as stone. This indicates that the recovered
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Figure 7. The filter weight of two filters for each wavelength.

Figure 8. A sample of the recovered spectral profile for a pixel
classified as plastic.

Image DBAT ResNest-101

EfficientNet-b5Ground Truth Swin-t CAM-SegNet-DBA

MatSpectNet

Figure 9. Predicted segmentation of one living room image.

hyperspectral image is a robust description of materials, ir-
respective of the illumination.

E. Additional Figures
This section presents additional figures mentioned in the

main paper. Figure 10 is the visualised response function of
the R channel, for both the standard response and the shifted
response.
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Olivier Casagrande, Sébastien Laux, Sandrine Ricaud, Gilles
Rey, et al. High-energy hybrid femtosecond laser system
demonstrating 2× 10 pw capability. High Power Laser Sci-
ence and Engineering, 8:e43, 2020. 1

[16] Hualiang Lv, Zhihong Yang, Hongge Pan, and Renbing Wu.
Electromagnetic absorption materials: Current progress and
new frontiers. Progress in Materials Science, page 100946,
2022. 1

[17] Gabriel Schwartz and Ko Nishino. Recognizing material
properties from images. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 42(8):1981–1995, 2020. 1

[18] Leslie N Smith. Cyclical learning rates for training neural
networks. In 2017 IEEE winter conference on applications
of computer vision (WACV), pages 464–472. IEEE, 2017. 2

[19] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 5

[20] Peter A van Nijnatten. Regular reflectance and transmit-
tance. In Experimental Methods in the Physical Sciences,
volume 46, pages 143–178. Elsevier, 2014. 1

7


	. Additional Background: Laboratory Material Property Measurement
	. Network Training
	. Data Preparation
	. Pre-training of the Spectral Recovery Network
	. Training of the Physically-Constrained Spectral Recovery Network
	. Training of the Material Segmentation Decoder

	. Physically-Constrained Spectral Recovery Experiments
	. [0,1] Normalisation and Brightness Factor
	. Noise Level Tuning
	. In-camera Processing Network Justification
	. Spectral Recovery Performance
	. Gradient Magnitude of Recovered Hyperspectral Images

	. Training Analysis
	. Per-category Analysis
	. Filter Analysis
	. Quantitative Analysis

	. Additional Figures

