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1. Result Extraction
The comparison group consists of deep learning tech-

niques of Spider-image CNN [3], RPNet [5] and classical
technique grid algorithm [4]. Code implementations are un-
available for these techniques. Therefore, the results have
been extracted from the figures reporting their results and
conditions have been matched for testing. Specifically, the
Spider-image CNN and RPNet results are from their respec-
tive papers [3,5]. The results used for the grid algorithm are
those reported by RPNet [5] in their results and figures. The
results were extracted from the result plots using the plot
digitizer web tool [1] and the data used to plot new graphs
to check they match the originals before use in this work.

2. Results Overview
The model is trained on data augmented with noise types

of false star, dropped star, positional and magnitude. For
initial submission, the model was trained to magnitude 5.0.
In response to reviewers’ comments to make the results
more comparable, it was trained to magnitude 6.0. The
magnitude 6.0 results for false star noise and dropped star
noise appear in the main paper [2], and for the remaining
noise types in this supplementary material as further expla-
nation is required which exceeds the page limitation. This
supplementary material also provides the magnitude 5.0 re-
sults and analysis.

The magnitude 5.0 results fulfill our goal of making
a star identification model for a general cheaper camera
which would have a wider field of view and be able to de-
tect only the brighter stars (< 5 magnitude). The magnitude
6.0 model allow us to provide a fair comparison to current
state-of-the-art models.

3. Converting Positional Noise to Angular Dis-
tance

The comparison group provides results on positional
noise, where the noise is created by moving stars by a ran-

dom number of pixels in a simulated image. Each sensor
will have a different field of view, pixel density and lens
distortion meaning that moving a star in units of a pixel will
result in different movement in angular distances between
sensors. We recommend that future work use angular dis-
tances to make comparisons easier to replicate.

In comparative works, results are reported as a standard
deviation in pixel space, reflecting a training and testing
process tied to the simulated sensor properties. That ap-
proach leads to a model that becomes specific to the sim-
ulated sensor, limiting its applicability to other configura-
tions.

To compare position tolerance to the comparison group
we converted each method’s reported pixel noise results into
a common angular distance frame. This is done by calculat-
ing the degrees-per-pixel of each method according to their
simulated platforms by dividing their simulated sensor field
of view (FOV) by it’s resolution.

A comparison of sensor setups in the comparison group
is summarized in Table 1.

Our proposed method of training and testing in the angu-
lar coordinate system avoids this issue, as angular distance
tolerances can be easily applied across different sensors and
other methods that also work in angular space.

4. Magnitude noise motivation

In an astronomical image, the magnitude M of a star is
derived from its flux F using the following equation:

M = −2.5 log10(F ) + C (1)

where M is the magnitude, F is the flux, and C is a
constant based on the reference flux. Whilst magnitude is
a logarithmic measure of flux, many sources (dark current,
background light pollution, read noise) of noise in an im-
age act additively on the flux, rather than proportionally.
This introduces a constant amount of uncertainty in the flux,
which disproportionately affects fainter stars. These faint
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Comparison of Simulation Platforms

FOV Pixel Size Resolution Max Magnitude Approx degrees per Pixel
RPNet 20◦x 20◦ 0.012 mm 1024 x 1024 pixels 6.0 Mv 0.019531◦

Spider-image CNN 20◦x 20◦ 0.055 mm 2048 x 2048 pixels 6.0 Mv 0.009766◦

Table 1. Comparison of simulation setups of RPNet [5], Spider-CNN [3].

stars, having lower initial flux values, are more suscepti-
ble to these disturbances and experience a greater relative
change in observed brightness compared to brighter stars.

To model this behavior in SIGNN we apply magnitude
noise as a percentage modifier to the original magnitude.
Our approach effectively captures how noise tends to influ-
ence faint stars more significantly than bright stars, ensur-
ing that the simulation better reflects real-world astropho-
tographic conditions. SIGNN will generally be more sensi-
tive to magnitude noise, when compared to methods that use
magnitude only as a filter for star visibility, due to its use of
relative magnitude as a feature in the star pattern itself.

However, when considering real images, it is rare for
nearby groupings of stars magnitude to fluctuate consid-
erably in both degree and different directions. The use of
relative magnitude ensures that, as long as the local bright-
ness in a star-pattern is affected evenly then there will be
negligible impact on SIGNN.

The performance of SIGNN towards magnitude noise is
in table 2. In this testing, noise is created as random per-
centage modifier per node, and applied randomly as either
a reduction or increase to it’s magnitude. This can result in
large shifts in the relative magnitudes between nearby stars.
If the new magnitude is too faint for the simulated sensor to
detect the node will be dropped. SIGNN accuracy drops to
76% under the highest level of this noise.

5. SIGNN 6.0 Results
The full results for SIGNN 6.0 are presented in Table

2. These include magnitude noise and dropped noise (per-
centage) that were not presented in the main paper. The
celestial graph created for SIGNN 6.0 contains 4274 nodes
and 20,310 edges. We test from noise levels of 5% for
and at more granular levels of noise than the comparison
group, and as such the expanded results are presented here.
Training, including the parametric data-generation, took 16
hours on an Nvidia RTX 3090. Test images, simulated at
20x20◦FOVs, take ≈ 5ms to predict all stars per image.

6. SIGNN 5.0 (Wide-FOV Model) Results
Table 3 shows SIGNN 5.0, a model trained towards use

on wide-angle FOVs with a lower magnitude sensitivity. In
marine navigation, long exposure times are impractical due
to image degradation caused by the rocking motion and in-

stability of the vessel. Additionally, cheaper, non-specialist
sensors are more common. This requires a lower magni-
tude threshold (limiting the detection of fainter stars) and
larger FOVs to capture sufficient information in each im-
age. SIGNN 5.0 uses a connection radius of 10◦ and magni-
tude threshold of 5.0 to reflect this. The celestial graph cre-
ated with these parameters contains 1645 nodes and 25,547
edges. The model architecture of SIGNN 5.0 is in figure 1.
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Performance towards False Noise (% False stars added

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
SIGNN 0.997 0.988 0.977 0.963 0.951 0.935 0.921 0.903 0.885 0.866

Performance towards Dropped Noise (%Stars dropped)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
SIGNN 0.995 0.987 0.976 0.962 0.944 0.923 0.890 0.854 0.819 0.762

Performance towards Position Noise (Std Dev in Radians)

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010
SIGNN 0.998 0.998 0.998 0.997 0.998 0.997 0.996 0.996 0.995 0.994

Performance towards Magnitude Noise

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
SIGNN 0.999 0.997 0.994 0.992 0.987 0.979 0.959 0.916 0.852 0.760

Table 2. Full results for SIGNN trained to magnitude 6.0. Testing images simulated using a 10◦radius. 800,000 (20,000 at each noise level)
images were tested giving ≈ 28 million star predictions. Details on noise generation are available in the main paper.

Figure 1. SIGNN 5.0 Model architecture for star identification using GAT layers.

Performance towards False Noise (% False stars added)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
SIGNN (5.0) 0.999 0.995 0.991 0.986 0.982 0.976 0.972 0.965 0.959 0.951

Performance towards Dropped Noise (% Stars dropped)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
SIGNN (5.0) 0.999 0.998 0.995 0.988 0.975 0.954 0.917 0.858 0.776 0.677

Performance towards Position Noise (Std Dev in Radians)

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010
SIGNN (5.0) 0.999 0.999 0.999 0.998 0.998 0.997 0.996 0.993 0.990 0.987

Performance towards Magnitude Noise

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
SIGNN (5.0) 0.999 0.997 0.994 0.992 0.987 0.979 0.959 0.916 0.852 0.760

Table 3. Full results for SIGNN 5.0. Testing images were simulated using a 40◦ radius. 400,000 (10,000 at each noise level) images were
tested giving ≈ 70million star predictions. Details on noise generation are available in the main paper.
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