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This supplementary material gives additional informa-
tion on several aspects of our work. In Appendix A, we
present more details on the neural BRDF modeling, includ-
ing a discussion of the angles and an overview of the para-
metric models. In Appendix B, we share more insight on
the training and the evaluation, including additional details
on the loss formulation and the regularizers for the additive
enhancement. Finally, we present several additional experi-
ments in Appendix C, among them additional renderings of
the objects and an analysis of the angle parametrization.

A. Additional Details on the Models

In this section, we give additional details on the neural
BRDF modeling. Appendix A.1 reviews the Rusinkiewicz
angles used to parametrize the view and light direction, Ap-
pendix A.2 gives an overview of the intrinsic encoding used
to parametrize the neural BRDFs directly on the meshes.
Finally, Appendix A.3 reviews the parametric models used
to construct the parametric neural BRDFs.

A.1. Angle Definitions

While the BRDF is often defined in terms of the view
and the light unit directions, v and l, respectively, those
two quantities are elements on the (curved) S2 manifold,
which makes them impractical to work with. Therefore, a
parametrization in terms of the angles of the vectors is usu-
ally employed. The most obvious choice is to use the polar
angles (θv, ϕv) and (θl, ϕl) of the two vectors directly, see
Fig. A.1 on the left. We refer to this parametrization as
view-light angles. For an isotropic BRDF, the absolute ori-
entation in the tangential plane is irrelevant, and only the
relative orientation of the vectors with respect to each other
is important. In this case the triplet (θv, θl, ϕv − ϕl) is suf-
ficient to parameterize the BRDF.

However, as noted by Rusinkiewicz, the view-light an-
gles are suboptimal to parameterize a BRDF [10]. They
propose a novel parameterization that aligns important fea-
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tures of the BRDF, like the specular peak, with the coordi-
nate axes. The representation is based on the half-vector

h =
v + l

∥v + l∥
. (1)

and a “difference” vector d, which is obtained by rotating
the light direction into a coordinate system, where the half
vector h coincides with the normal, see Fig. A.1 on the right
for an overview. We denote the surface normal by n and use
an arbitrary tangential vector t and the binormal b = n × t
to define a local coordinate system. The difference vector d
is computed as

d = rotb,−θhrotn,−ϕh
l, (2)

where rotx,αy means the rotation of vector y around the
axis x by the angle α. The full Rusinkiewicz angles
read (θh, ϕh, θd, ϕd). Isotropic BRDFs do not depend on
ϕh; therefore, the triplet (θh, θd, ϕd) is sufficient for the
parametrization in this case. See [10] for more details.

A.2. Neural Intrinsic Encoding

For the positional encoding on the manifold, we use the
neural intrinsic encoding described by Koestler et al. [5],
who propose to use a subset of the eigenfunctions of the
Laplace-Beltrami operator (LBO)1 for the encoding. Since
the LBO is a generalization of the Laplace operator on an
Euclidean domain, this form of encoding can be seen as an
adaption of positional encoding from the Euclidean domain
to manifolds like meshes. Given a closed, compact mani-
fold M ⊂ Rn, we denote the eigenfunctions of the LBO on
M by ζj . For the encoding, we consider a subset of indices
I ⊂ N and, given a point x on the mesh, use the encoding

ΘLBO(x) = (ζj(x))j∈I . (3)

In the discrete setting of a mesh, the values of the LBO
eigenfunctions are computed on the vertices. We use
barycentric interpolation to obtain the encoding for an ar-
bitrary position on the mesh. In practice, it is not necessary

1We refer to [11] for more details on the LBO.
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Figure A.1. Visualization of the view-light and the Rusinkiewicz angles on the left and on the right, respectively. Shown are view and light
direction, v and l in a local coordinate system given by surface normal n, a surface tangent t (which is arbitrary in the case of isotropic
BRDFs) and the binormal b = n× t. The view-light angles are simply the polar angles of v and l, while the Rusinkiewicz angles are given
in terms of the half angle h = v+l

∥v+l∥ and a “difference” vector d which is the light direction l in a coordinate system with h as the normal.

to use a connected index set. We follow [5] and use several
connected blocks of eigenfunctions for the encoding; see
Appendix B.3 for the concrete numbers.

A.3. Parametric BRDF Models

In the following section, we give a short overview of the
parametric models used in this work. We refer to the re-
spective works of more details.

Realistic Phong Model We use the model described in
[6]. To ensure energy conservation, we predict a combined
value kfull ∈ [0, 1]3 for the reflectivities as well as a split
percentage ζ ∈ [0, 1]3 and compute the individual reflectiv-
ities as kd = ζ ◦kfull and ks = (1− ζ)◦kfull. To ensure the
correct range, we use a sigmoid nonlinearity for kfull and ζ.
The specular exponent n ≥ 1 is computed using a softplus
output function with an additive offset of 1.

Torrance-Sparrow Model For the specular part, we use
the basic form of the microfacet model described in [16],
which reads (omitting the dependence on the position)

fspec(l, v) =
D(h)F (v, h)G(l, v, h)

4⟨n, l⟩⟨n, v⟩
, (4)

where h is the half vector described in Eq. (1), D is the nor-
mal distribution function (NDF), F is the Fresnel term, G
is the geometric shadowing term and n ∈ S2 is the surface
normal in the local coordinate system. By ⟨n, l⟩ we denote
the scalar product between n and l.

We use the (isotropic) Trowbridge-Reitz/GGX distribu-
tion [14, 17, 18] for D, which reads

D(h) =
α2

π(⟨n, h⟩2(α2 − 1) + 1)2
(5)

with the roughness parameter α > 0. For G, we use smiths
method [14], which splits the term multiplicatively as

G(l, v, h) = G̃(l)G̃(v). (6)

We use the Trowbridge-Reitz/GGX term [14, 17, 18] for G̃,
which for a vector w ∈ R3 reads

G̃(w) =
2⟨n,w⟩

⟨n,w⟩+
√
α2 + (1− α2)⟨n,w⟩2

, (7)

again with the same roughness parameter α. For F we use
Schlick’s Fresnel term [13], which reads

F (v, h) = F0 + (1− F0)(1− ⟨v, h⟩)5, (8)

with the characteristic specular reflectance F0 ∈ [0, 1]3.
We combine the specular part with a Lambertian diffuse

term, which we diminish by 1 − F . The additional factor
accounts for the fact that light reflected at the surface is not
available for (diffuse) subsurface scattering. Hence, the full
BRDF reads

f(l, v) = (1− F (v, h))
ρd
π

+ fspec(l, v). (9)

The parameters predicted by the neural network are the
roughness parameter r ∈ [0, 1] from which we compute



α = r2, as well as the diffuse albedo ρd ∈ [0, 1]3 and the
characteristic specular reflectance F0 ∈ [0, 1]3. We use a
sigmoid output nonlinearity for all of them to ensure the
correct range. Note that we found the convergence to be
more stable if we scale the input to the roughness nonlin-
earity by 0.5.

Fresnel Microfacet BRDF Model The Fresnel micro-
facet BRDF combines an extended microfacet specular term
with a generalized radiometric body reflection [3]. We re-
fer to the paper for an in-depth discussion of the method.
One change in the approach for the specular term compared
to the Torrance-Sparrow model is that a generalized normal
distribution is used for D, which involves estimating a cor-
responding normalization constant during training. While
we were able to predict the rest of the parameters in a spa-
tially varying manner, we were unable to do so for the pa-
rameters of this generalized normal distribution since the
estimation of the normalization makes the computation un-
traceable. Therefore, we estimate a single set of parameters
for the distribution, while all the other parameters are esti-
mated dependent on the position x. We want to point out
again that for the synthetic data, this makes the estimation
less complex since the material is uniform over the mesh.

Disney BRDF The Disney BRDF extends the microfacet
model by several effects, and we refer to the paper for
a detailed derivation and discussion [2]. The only ad-
justment we do compared to the full model is to fix the
anisotropic parameter equal to 0, effectively making the
BRDF isotropic. Since all of the other models are isotropic,
this enables a meaningful comparison between the ap-
proaches. Note that we found the convergence to be more
stable if we scale the input to the roughness nonlinearity by
0.5.

A.4. Softplus Scaling

While tuning the models, we occasionally observed runs
for the additive purely neural models, where the training
converged to a wrong local minimum. We found that scal-
ing the softplus output of the specular MLP by a factor of
0.5 can stabilize the training in those cases. See also Ap-
pendix C.5 for a visualization of the failure case.

B. Training and Evaluation
This section contains additional details on the training

and the evaluation. Appendix B.1 sheds more light on the
gamma-corrected loss formulation. Appendix B.2 contains
insight into the preprocessing of the DiLiGenT-MV dataset.
Appendix B.3 presents the encoding parameters used for
the training. Appendix B.4 gives details on the regulariz-
ers employed for the enhancement of the additional split.

The excluded values for the computation of the RMSE are
discussed in Appendix B.5. Finally, Appendix B.6 presents
details on the Monte Carlo integration for the experiments
on the energy conservation.

B.1. Loss Formulation

To avoid a dominant influence of the bright regions on
the loss, we use a gamma mapping to transform the RGB
values from linear to sRGB space, as described in Eq. (10)
the main paper. We repeat the loss formulation here for
convenience.

L =
1

N

N∑
i=1

(γ(Lo(x, v))− γ(LGT (x, v))
2 (10)

We use the following standard formula for the gamma
mapping g : [0, 1] → [0, 1], clin 7→ csRGB [1]:

g(clin) =

{
323
25 clin if clin ≤ 0.0031308
211
200 c

5
12

lin − 11
200 else

(11)

B.2. Pre-Processing of the Data

The triangle meshes supplied with the DiLiGenT-MV
dataset [8] have an unreasonably high number of vertices,
which causes the computation of the LBO eigenfunctions
to take very long. Therefore, we reduce the number of ver-
tices from roughly 106 to about 105. To stay consistent with
the simplified mesh, we compute the normals on the mesh
rather than using the normal maps included in the dataset.
To speed up the training process, we pre-compute and store
the LBO eigenfunctions as well as the ray-mesh intersec-
tions and the shadow rays.

B.3. Encoding Parameters

For the eigenfunctions of the LBO we use 6 blocks be-
tween the 1st and the 512th eigenfunction. We use 64 eigen-
functions for the first block and follow up with 6 evenly
spaced blocks of 16 eigenfunctions. For the positional en-
coding of the angles, we use 3 encoding frequencies.

B.4. Regularizers for the Enhanced Splitting

While the enhancement described in Sec. 4.4 in the main
text shows improvements for both additive architectures, it
also introduces additional ambiguity. The weight ξ(x, l, v)
makes the diffuse summand dependent on the directions,
and therefore, this term can now potentially represent spec-
ular behavior as well. To separate the phenomena, we intro-
duce two additional regularizers.

First, we employ an L1 loss between the raw diffuse
part (without the additional weight ξ) and the ground



truth. Again, we use the gamma mapping described in Ap-
pendix B.1.

Lreg,diff =
1

N

N∑
i=1

∥γ(fd(x))− γ(LGT (x, v))∥1 (12)

The idea is to encourage the model to represent as much of
the appearance as possible by the diffuse term. This will be
limited to the non-view-dependent parts of the appearance
automatically since the raw diffuse part fd(x) is not view-
dependent.

Second, we employ an L1 regularizer on the specular
part.

Lreg,spec =
1

N

N∑
i=1

∥fs(x, l, v)∥1 (13)

The idea for this term is to encourage the model to represent
only those components of the appearance that are actually
view-dependent by the specular part. We use a weight of
5 · 10−4 for both terms before adding them to the total loss.

Interestingly, the regularizers do not significantly change
the reconstruction quality of the enhanced split; the quanti-
tative evaluation with and without them is almost identical.
However, they force a more reasonable split between the
diffuse and specular parts. Without them, the model tends
to predict extreme mixing colors on the different parts, that
combined yield the correct color. The regularizers ensure
that realistic results for the diffuse albedo and the specular-
ities are obtained.

B.5. BRDF-Spcae Metric RMSE 3
√

For the semi-synthetic dataset, we utilize the availability
of ground truth BRDF data to report a BRDF-space met-
ric on the reconstruction quality. We follow the analysis of
Lavoué et al. who have investigated a wide range of met-
rics and analyzed the correlation with reconstruction qual-
ity perceived by humans [7]. Their results show that ap-
plying the cubic root to the BRDF values before computing
a standard root mean squared error (RMSE) between the
reconstruction and the ground truth yields a metric that cor-
relates well with human perception. We refer to this metric
as RMSE 3

√
.

Another aspect that they found helpful to increase the
correlation is to discard BRDF values for grazing angles
above 80◦, which we also adopt in our analysis. A further
reason to discard these values is the observation of Bur-
ley, who reported anomalies and extrapolation in the MERL
data in that range of angles [2], which the semi-synthetic
data inevitably inherits. Moreover, we reject values for sat-
urated pixels since in this case, the image value was clipped
during the data creation, and therefore the ground truth
value is not a reliable reference. Note that BRDF-space
metrics can only be reported for the semi-synthetic data,

since the DiLiGenT-MV dataset does not contain ground
truth BRDF values.

B.6. Monte Carlo Integration

To approximate the integral in the energy conservation
(Eq. (4) in the main text) we use Monte Carlo integration
with samples from the cosine-weighted hemisphere sam-
pling. The approximation of the integral reads∫

H
f(x, l, v) cos θv dv ≈ 1

NMC

NMC∑
i=1

f(x, l, vi) cos θvi
p(vi)

,

(14)
where x and l are the position and the light direction for
which the integral is evaluated. vi ∼ p(vi) are the sampled
view directions, which are drawn according to the cosine-
weighted distribution on the hemisphere, which reads

p(vi) =
1

π
cos θvi . (15)

Hence, the approximation in Eq. (14) can be simplified to∫
S2
f(x, l, v) cos θv dv ≈ π

NMC

NMC∑
i=1

f(x, l, vi). (16)

To ensure convergence, we sample NMC = 20k view
directions for each randomly sampled point-light pair.

C. Additional Experimental Results
In this section, we present several additional results. Ap-

pendix C.1 and Appendix C.2 give further results and de-
tails for the experiments on the reciprocity approach and
the number of layers for the directions from Sec. 6.2 in
the main text. In Appendix C.3, we analyze the influence
of the angle parametrization on the reconstruction quality.
Appendix C.4 justifies our changes to the NeRFactor archi-
tecture, which is the basis of our additive separate archi-
tecture. Appendix C.5 gives insight to failure cases for the
purely neural additive approaches that we observed occa-
sionally. While Appendix C.6 presents a qualitative anal-
ysis of the diffuse and specular parts of the models based
on a split of the reflectance Appendix C.7 uses the albedo
maps to analyze how well the models can represent the spa-
tially uniform BRDFs of the semi-synthetic dataset. Finally,
Appendix C.8 provides additional qualitative and quantita-
tive results for both datasets, comparing the various neural
BRDF approaches.

C.1. Quantitative Results for the Reciprocity Ap-
proaches

As shown in Sec. 6.2 in the main text, the random input
swap of view and light direction applied during training, as
described in LitNerf [12], can reduce the RMSE of the reci-
procity constraint. However, this strategy does not provide



MERL [9] DiLiGenT-MV [8]
∆RMSE 3√

∆PSNR ∆DSSIM ∆LPIPS ∆ FLIP ∆PSNR ∆DSSIM ∆LPIPS ∆ FLIP

Single MLP (rnd. in-swap) -0.08 +0.04 +0.02 +0.02 +0.02 +0.06 -0.01 -0.01 -0.02
Single MLP (ours) -0.08 -0.10 +0.02 +0.01 +0.03 -0.30 +0.03 +0.06 +0.07
Additive Separate (rnd. in-swap) -0.07 +0.04 +0.02 +0.01 +0.02 0.00 0.00 0.00 +0.01
Additive Separate (ours) -0.07 -0.05 +0.02 +0.02 +0.04 -0.02 0.00 +0.01 +0.01
Additive Shared (rnd. in-swap) -0.05 -0.10 +0.04 +0.16 -0.12 -0.15 +0.01 +0.01 +0.01
Additive Shared (ours) -0.01 -0.21 +0.06 +0.24 -0.05 -0.13 0.00 0.00 +0.01

Table C.1. Effect of the reciprocity strategies on the reconstruction quality. Shown are the differences to the results in Tab. 1 in the main
text, which reports the reconstruction quality of the architectures without any reciprocity strategy. With a few exceptions, we see that the
influence of both strategies on the results is fairly marginal, with a tendency for slightly worse results. RMSE 3√, DSSIM, LPIPS and FLIP
are scaled by 100.

a guarantee that the reciprocity is actually fulfilled. In con-
trast, our input mapping, as proposed in Sec. 4.3, ensures
that the reciprocity constraint is exactly fulfilled by con-
struction. In Tab. C.1, we analyze the effect of both strate-
gies on the reconstruction quality by comparing against the
results without any reciprocity strategy. Overall, we observe
only a minimal difference with a minor tendency for slightly
worse results as a trade-off for the fulfilled reciprocity. One
exception is the single MLP architecture, where, for the
real-world examples, the random input swap seems to have
a more noticeable advantage over our strategy.

C.2. Architecture Changes Experiments: Number
of Layers for View/Light Direction

In Sec. 6.2 in the main text, we analyzed the influence
of the number of layers (NOL) for the directions on the re-
construction quality. In the following, we provide detailed
architectural changes for the different models.

• For the single MLP architecture, we feed the directions
in at layer 4 instead of 1, decreasing the NOL for the
directions from 6 to 3.

• For the additive separate architecture, we reduce the
NOL of the specular MLP from 4 to 2. Also, we re-
move the input skip.

• For the additive shared architecture, we reduce the
NOL of the shared MLP from 5 to 3 while increas-
ing the NOL of the diffuse and specular MLPs (and
therefore NOL for the directions) by 2, respectively.

C.3. Influence of the Angle Parametrization

Following previous work [15, 19], we use the
Rusinkiewicz angles [10] to parametrize the directions as
inputs for the MLPs; see Appendix A.1 for a review and
discussion. As noted by Rusinkiewicz, this parametriza-
tion aligns the specular peaks better with the coordinate
axes, which benefits learning highly specular materials.
The results in Tab. C.2 confirm that using the view-light
angles as parametrization for purely neural BRDF mod-
els reduces the reconstruction quality compared to the

Scalar Specularity GT

Figure C.1. Qualitative BRDF reconstruction for the cow object
from the DiLiGenT-MV dataset [8] for the additive separate ar-
chitecture with a scalar specular term (as suggested in NeRFac-
tor [19]). The results show, that a scalar specular term is unable
to reconstruct the reflectance of this object and creates a spurious
glow. This indicates that for some materials, a specular term with
3 channels is necessary to yield high-quality reconstructions.

Rusinkiewicz angles. Moreover, we see that, indeed, this ef-
fect is more prominent for the MERL-based semi-synthetic
dataset, which contains more highly specular materials.

C.4. Changes from the NeRFactor Architecture

While our additive separate architecture is based on
NeRFactor [19], we made two changes, which improved the
results for our data significantly. In this section, we present
the comparison to justify these adjustments.

As a first change, we remove the albedo clamping. The
original work empirically constrains the diffuse reflection
(i.e. the albedo) to [0.03, 0.8]. Since we work in linear
space, we transform these values from sRGB to linear
space, which yields the range [0.0023, 0.6038]. The results
in Tab. C.3 show that we obtain significantly worse results
for the semi-synthetic MERL-based data. The reason lies in
the metallic materials contained in this dataset. Metals show
almost no subsurface scattering due to the free electrons [1].
As demonstrated in Appendix C.6 and visible in particular
in Fig. C.5, all models replicate this behavior and show al-
most no diffuse contribution. However, the lower bound on
the diffuse part imposed by the albedo clamping prohibits
a negligible contribution of the albedo, and we observe a
dark gray base color for the diffuse renderings. This leads



MERL [9] DiLiGenT-MV [8]
∆RMSE 3√

∆PSNR ∆DSSIM ∆LPIPS ∆ FLIP ∆PSNR ∆DSSIM ∆LPIPS ∆ FLIP

Single MLP (view-light) +0.11 -0.86 +0.05 +0.14 +0.15 -0.10 +0.01 +0.01 +0.01
Additive Separate (view-light) +0.11 -0.85 +0.04 +0.12 +0.16 -0.03 +0.01 -0.02 +0.01
Additive Shared (view-light) +0.17 -1.01 +0.05 +0.09 +0.07 -0.07 +0.01 -0.01 0.00

Table C.2. Effect of using the view-light angles instead of the Rusinkiewicz angles as a parametrization of the directions. Shown are the dif-
ferences to the results in Tab. 1 in the main text, which reports the reconstruction quality of the architectures with the Rusinkiewicz angles.
The results show that overall, the view-light parametrization reduces the reduction quality compared to the Rusinkiewicz parametrization.
The difference is more significant for the semi-synthetic MERL-based dataset. The reason is that this data contains more highly specular
materials with complex reflective patterns. The alignment of the specular peaks with the coordinate axes provided by the Rusinkiewicz
angles seems to provide a significant benefit in this case. RMSE 3√, DSSIM, LPIPS and FLIP are scaled by 100.

MERL [9] DiLiGenT-MV [8]
∆RMSE 3√

∆PSNR ∆DSSIM ∆LPIPS ∆ FLIP ∆PSNR ∆DSSIM ∆LPIPS ∆ FLIP

Additive Separate (albedo clamp.) +0.90 -2.25 +0.54 +0.84 +0.90 +0.05 0.00 -0.02 +0.01
Additive Separate (scalar spec.) +0.41 -3.32 +0.10 +0.34 +0.74 -0.54 +0.01 +0.04 +0.32

Table C.3. Effect of using the albedo clamping and a scalar specular term proposed in NeRFactor [19] for the additive separate architecture.
Shown are the differences to the results in Tab. 1 in the main text, which reports the reconstruction quality of the additive separate model
with neither of the two. We see, that the albedo clamping reduces the reconstruction quality, in particular for the MERL-based data. The
clamping prohibits the model from predicting an albedo close to zero, which is necessary, however, for the metallic materials contained
in this dataset. See also Appendix C.6 and in particular in Fig. C.5. Similarly, the scalar specular term reduces the reconstruction quality
for both datasets. We find, that for certain materials, an RGB specularity is necessary for a faithful reconstruction, see Fig. C.1. RMSE 3√,
DSSIM, LPIPS and FLIP are scaled by 100.

to the decrease in construction quality. While we see slight
improvements with the albedo clamping for non-metal ma-
terials and the real-world data, we still decided to remove
it due to the significant performance decrease for metallic
materials.

As a second change, we use an RGB specular term in-
stead of a scalar one. While the original work assumes, that
all color information can be handeled by the albedo net-
work, we find, that for certain materials, a colored spec-
ular part is necessary for good reconstructions. The most
extreme example we observed is the cow object from the
DiLiGenT-MV dataset [8] as shown in Fig. C.1. We can
clearly see, that an approach with a scalar specular term
yields an inaccurate glow effect that is not observed for
models with an RGB specular term (cf . the rendering for the
additive separate architecture in Fig. 3 in the main text and
Fig. C.3 in the appendix). While the effect is less prominent
for other materials, Tab. C.3 confirms that a scalar specu-
lar term instead of an RGB one yields systematically worse
results for both datasets. Recall that we observe a similar
effect on the cow for the FMBRDF model [3], which also
employs a scalar specular term; cf . Sec. 6.1 in the main text.

C.5. Failure Cases

Although all methods show quite stable convergence
with the chosen parameters, we observed occasional is-
sues with very shiny materials for the additive purely neural
models that employ a softplus output nonlinearity. Fig. C.2
shows a failure example for the additive shared architec-

No Scaling Output Scaling 0.5 GT

Figure C.2. Failure case for the additive shared architecture. For
additive purely neural methods with softplus output nonlinearity,
we observed occasional failures like this for very shiny materials.
As described in Appendix A.4, scaling the output of the softplus
function solves this issue.

ture. As described in Appendix A.4, scaling the output of
the softplus function solves this issue.

C.6. Qualitative Results Diffuse and Specular Split

In Figs. C.3 to C.5, we present a quantitative analysis
of the diffuse and the specular component of all models
that split the BRDF into those two contributions. Over-
all, the methods mostly show a reasonable split. For the



purely neural methods, we notice a tendency to represent a
larger fraction of the appearance by the specular part, lead-
ing to darker diffuse parts. Our enhancements introduced
in Sec. 4.4 and in particular the regularizers discussed in
Sec. 4.4 and Appendix B.4 seem to improve on the disen-
tanglement of diffuse and specular components. Fig. C.5
reveals that all models can represent the behavior of metal-
lic objects, where almost no subsurface scattering is present,
and indeed predict almost no albedo component.

C.7. Spatial Variation of the Reconstructed BRDFs

As described in the main text, the MERL BRDFs are
uniform over the respective meshes for the semi-synthetic
dataset. To assess how well the models can capture this
spatial uniformity, we render the albedo without the cosine
term for all models, that employ an additive split. The re-
sults for five materials in Fig. C.6 reveal very little spatial
variation of the albedos, which indicates that all models are
able to capture the spatial uniformity quite well.

C.8. Additional Comparison Results

We report quantitative results for the individual objects
of the DiLiGenT-MV dataset in Tab. C.4 and qualitative re-
sults for both datasets in Figs. C.7 to C.13.

Real-World Data The quantitative evaluation on the indi-
vidual objects in Tab. C.4 confirms that for the DiLiGenT-
MV dataset [8], the difference between the approaches
based on parametric models and purely neural methods is
quite small. We even observe that for individual objects
like the bear, some parametric approaches perform slightly
better than the purely neural approaches – in particular, bet-
ter than approaches with more layers for the directions (e.g.
Single MLP). This behavior can also be observed qualita-
tively in Fig. C.7. The reason might be the noise in the real-
world data, to which the purely neural methods seem to be
slightly more sensitive. The fact that neural approaches with
fewer layers for the directions (e.g. Additive shared) yield
better results supports this claim, in particular in light of the
analysis of the number of layers for the directions presented
in Sec. 6.2.

Moreover, Fig. C.7 reveals that all methods show errors
in similar regions - recesses in particular. We hypothesize
un-modelled interreflections as a potential reason. Due to
the indicator function in the rendering equation for our sce-
nario (Eq. (9) in the main paper), shadows in the recesses
will be completely black in our renderings. That is, how-
ever, a simplification because, in reality, some light reflected
off the near surfaces will reach the shaded regions in the re-
cesses. Therefore, larger errors for the image-based metrics
in those parts of the mesh are expected.

Finally, Tab. C.4 confirms that for the novel additive

strategy, which we proposed in Sec. 4.4, we observe consis-
tent improvements in the extended vanilla additive models.

Semi-Synthetic Data Figs. C.8 to C.13 show a system-
atic advantage of purely neural methods for the challenging
materials of the MERL dataset. The error maps reveal that
in particular the specular peaks are much better represented,
often showing a significant improvement over the paramet-
ric methods. While the difference is smaller for more dif-
fuse materials, we still see an advantage of the purely neural
methods.



Datasets Error metric RP [6] TS [16] FMBRDF
[3] Disney [2] Single

MLP Add Sep Add
Shared

Add Sep
(enh.)

Add
Shared
(enh.)

Bear

PSNR ↑ 43.99 44.24 44.24 44.35 44.09 43.96 44.66 44.34 44.74
DSSIM ↓ 0.476 0.464 0.464 0.454 0.489 0.477 0.445 0.463 0.442
LPIPS ↓ 0.993 0.985 0.973 1.022 1.124 1.115 1.030 1.062 1.022

FLIP ↓ 2.776 2.729 2.759 2.708 2.661 2.695 2.581 2.613 2.550

Buddha

PSNR ↑ 36.30 36.41 36.50 36.35 35.50 35.96 36.77 36.07 36.71
DSSIM ↓ 1.298 1.275 1.257 1.281 1.387 1.299 1.228 1.283 1.224
LPIPS ↓ 2.278 2.272 2.240 2.376 2.489 2.257 2.211 2.229 2.169

FLIP ↓ 4.212 4.187 4.184 4.243 4.156 4.051 3.945 4.014 3.928

Cow

PSNR ↑ 46.02 46.57 43.84 46.57 46.22 46.37 47.08 46.49 47.12
DSSIM ↓ 0.395 0.373 0.422 0.372 0.391 0.381 0.358 0.374 0.354
LPIPS ↓ 1.682 1.686 1.885 1.701 1.635 1.593 1.595 1.570 1.568

FLIP ↓ 2.270 2.133 3.066 2.159 1.987 1.969 1.933 1.961 1.919

Pot2

PSNR ↑ 46.13 46.35 46.47 46.49 46.64 46.63 46.92 46.66 46.92
DSSIM ↓ 0.524 0.502 0.502 0.490 0.492 0.492 0.474 0.486 0.472
LPIPS ↓ 1.117 1.109 1.101 1.132 1.068 1.067 1.073 1.054 1.073

FLIP ↓ 2.841 2.774 2.748 2.759 2.606 2.622 2.576 2.608 2.569

Reading

PSNR ↑ 35.51 35.58 36.05 35.72 35.77 35.94 36.31 35.84 36.38
DSSIM ↓ 1.184 1.173 1.114 1.155 1.185 1.139 1.066 1.116 1.052
LPIPS ↓ 2.786 2.765 2.708 2.709 2.506 2.476 2.447 2.403 2.466

FLIP ↓ 3.497 3.446 3.383 3.411 3.397 3.281 3.243 3.218 3.172

Table C.4. Quantitative comparison of the BRDF models on all individual objects of the real-world data [8]. PSNR, DSSIM and LPIPS
are computed for the sRGB renderings. All quantities are first averaged over one object and then averaged over all objects in the respective
dataset. DSSIM, LPIPS and FLIP are scaled by 100. We see that for this dataset, the approaches based on parametric models (■) yield
results that are comparable to the purely neural approaches (■). For individual objects, some parametric approaches even show slightly
better results than the purely neural ones, in particular better than approaches with more layers for the directions (e.g. Single MLP). Again,
a potential reason might be noise in the real-world data to which the purely neural models seem to be a little more sensitive; especially with
more layers for the directions. This is supported by the observation that among the purely neural approaches, we see again the tendency
that fewer layers for the directions (e.g. Additive Separate) is better than more (e.g. Single MLP). Our enhancement for the additive split
(enh.) as introduced in Sec. 4.4 shows consistent improvements of the respective vanilla additive model.
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RP [6] TS [16] FMBRDF [3] Disney [2] Add Sep Add Shared Add Sep (enh.) Add Shared
(enh.) GT

Figure C.3. Renderings of the diffuse and the specular parts separately for all additive models. Note that for the models with the enhanced
additive strategy (enh.), the diffuse part is already weighted with ξ. Also shown are the combined rendering (added) and the ground truth
image (GT). All models show a reasonable split into diffuse albedo and specular parts. For the vanilla methods of the purely neural category
(Additive Separate and Additive Shared), we observe the tendency to represent more appearance in the specular part, which, as can be seen
by the other models, does not seem necessary. Our enhancement for the additive split (enh.) as introduced in Sec. 4.4 and in particular the
regularizers discussed in Sec. 4.4 and Appendix B.4 seem to improve on the disentanglement of diffuse and specular components. Note
that for the cow object, a colored (RGB) specular component seems necessary to reconstruct its appearance. The FMBRDF model [3],
which is based on a scalar specular term, shows an unnatural glow. Note that we observed similar behavior for the scalar specular term
proposed by NeRFactor [19], as discussed in Appendix C.4.
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Figure C.4. Renderings of the diffuse and the specular parts separately for all additive models. Note that for the models with the enhanced
additive strategy (enh.), the diffuse part is already weighted with ξ. Also shown are the combined rendering (added) and the ground truth
image (GT). The figure shows non-metallic objects. Most models show a reasonable split into diffuse albedo and specular highlights.
However, the figure reveals an issue that we observed occasionally for the vanilla purely neural models based on an additive split: For
some materials, like the alumina oxide in this case, there seems to be an ambiguity that allows the model to perform an unreasonable
“color-split”. While the added result yields the correct colors for all of our experiments, and we do not observe a reduced reconstruction
quality, this ambiguity might cause problems in specific cases. Note that our enhancement for the additive split (enh.) as introduced in
Sec. 4.4 and in particular the regularizers discussed in Sec. 4.4 and Appendix B.4 eliminate this issue.
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Figure C.5. Renderings of the diffuse and the specular parts separately for all additive models. Note that for the models with the enhanced
additive strategy (enh.), the diffuse part is already weighted with ξ. Also shown are the combined rendering (added) and the ground truth
image (GT). The figure shows metallic objects. This type of material shows almost no subsurface scattering, due to the free electrons [1].
All models are able to replicate this behavior, as can be seen clearly by the almost non-existent contribution of the diffuse part.
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Figure C.6. Analysis of the spatial variance of the reconstructed BRDFs. Shown are the albedos rendered without the cosine term for five
spatially uniform objects of the MERL-based semi-synthetic dataset. We see that overall all models are able to capture the uniformity of
the BRDF well and show minimal spatial variation. The results also reveal the ambiguity introduced by an additive splitting strategy, which
allows the model to capture the appearance solely by the specular term, leading to almost zero albedo. While this is particularly true for
the purely neural models, we also occasionally observe it for other models (e.g. green latex for Torrance-Sparrow or Disney for Ipswitch
pine).
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Figure C.7. Qualitative evaluation for the four remaining objects of the DiLiGenT-MV dataset [8] not presented in the main paper. Shown
are renderings in sRGB space with the corresponding PSNR values and the FLIP error maps for the sRGB renderings. Both, purely neural
approaches (■) and parametric models (■) show errors in similar regions - recesses in particular - which makes interreflections a likely
cause. We observe a tendency of overfitting for the purely neural models for the bear object, which is also visible as artifacts in the
renderings. Among the purely neural models, approaches with fewer layers for the directions (e.g. Additive Separate) are less affected than
architectures with more layers for the directions (e.g. Single MLP). This matches the observation in Sec. 6.2 that models with fewer layers
for the directions are more robust for the potentially more noisy real-world dataset.
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Figure C.8. Qualitative evaluation of the reconstruction for four BRDFs from the MERL database [9] uniformly rendered on common
test meshes from [4]. Shown are renderings in sRGB space with the corresponding PSNR values and the FLIP error maps for the sRGB
renderings. Purely neural approaches (■) show superior results over the parametric models (■).
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Figure C.9. Qualitative evaluation of the reconstruction for four BRDFs from the MERL database [9] uniformly rendered on common
test meshes from [4]. Shown are renderings in sRGB space with the corresponding PSNR values and the FLIP error maps for the sRGB
renderings. Purely neural approaches (■) show superior results over the parametric models (■).
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Figure C.10. Qualitative evaluation of the reconstruction for four BRDFs from the MERL database [9] uniformly rendered on common
test meshes from [4]. Shown are renderings in sRGB space with the corresponding PSNR values and the FLIP error maps for the sRGB
renderings. Purely neural approaches (■) show superior results over the parametric models (■).
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Figure C.11. Qualitative evaluation of the reconstruction for four BRDFs from the MERL database [9] uniformly rendered on common
test meshes from [4]. Shown are renderings in sRGB space with the corresponding PSNR values and the FLIP error maps for the sRGB
renderings. Purely neural approaches (■) show superior results over the parametric models (■).
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Figure C.12. Qualitative evaluation of the reconstruction for four BRDFs from the MERL database [9] uniformly rendered on common
test meshes from [4]. Shown are renderings in sRGB space with the corresponding PSNR values and the FLIP error maps for the sRGB
renderings. Purely neural approaches (■) show superior results over the parametric models (■).
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Figure C.13. Qualitative evaluation of the reconstruction for four BRDFs from the MERL database [9] uniformly rendered on common
test meshes from [4]. Shown are renderings in sRGB space with the corresponding PSNR values and the FLIP error maps for the sRGB
renderings. Purely neural approaches (■) show superior results over the parametric models (■).


