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A. Experimental Results

A.1. Impact of different loss combinations

We examined how various combinations of loss metrics
affected the validation performance of the model in Table 1.
In addition, to provide additional details about the coeffi-
cients used for each loss combination, we conducted several
experiments to determine the optimal coefficients for each
combination. The best coefficients for each combination are
depicted in Table 2.

A.2. More visualization results

We have included an additional visualization of SUM’s
predictions in Figure 1. Compared to ground truths, SUM
consistently delivers accurate predictions across various im-
age types and datasets, underscoring its robustness and
versatility in visual saliency modeling. Moreover, to fur-
ther validate the robustness of our proposed method, we
conducted comparative analyses using publicly available
datasets that had not been previously seen, as detailed in
Table Table 3. The performance, as depicted in Figure 2,
notably remains consistent when applied to new and pre-
viously unseen datasets. This suggests that SUM adeptly
identifies and highlights the salient features in images,
maintaining close alignment with the ground truth data.
Therefore, SUM can be reliably utilized in diverse real-
world applications where accuracy in visual recognition is
critical.
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Table 1. Evaluation of different combinations of loss functions on model performance.

Loss Functions Avg. Performance on Salicon [3] Avg. Performance Across All Datasets
KL CC SIM NSS MSE CC ↑ KLD ↓ NSS ↑ SIM ↑ FScore ↑ CC ↑ KLD ↓ NSS ↑ SIM ↑ FScore ↑
✓ ✗ ✗ ✗ ✗ 0.910 0.189 1.908 0.805 2.797 0.85 0.465 2.498 0.723 2.386
✗ ✓ ✗ ✗ ✗ 0.907 0.732 1.926 0.787 1.634 0.851 1.08 2.532 0.7 1.218
✗ ✗ ✓ ✗ ✗ 0.911 0.447 1.91 0.807 2.391 0.85 0.747 2.469 0.728 1.917
✗ ✗ ✗ ✓ ✗ 0.834 0.765 2.044 0.721 0 0.804 1.072 2.614 0.658 -0.079
✗ ✗ ✗ ✗ ✓ 0.909 0.234 1.919 0.803 2.696 0.846 0.525 2.479 0.719 2.089
✓ ✗ ✓ ✗ ✗ 0.911 0.196 1.928 0.806 2.833 0.852 0.465 2.337 0.728 1.972
✓ ✗ ✗ ✓ ✗ 0.892 0.199 2.029 0.792 2.537 0.841 0.467 2.594 0.712 2.353
✓ ✓ ✗ ✗ ✗ 0.911 0.185 1.191 0.805 1.977 0.852 0.453 2.515 0.720 2.46
✓ ✗ ✗ ✗ ✓ 0.909 0.192 1.917 0.802 2.755 0.851 0.456 2.504 0.723 2.441
✗ ✓ ✓ ✗ ✗ 0.910 0.531 1.921 0.802 2.188 0.85 0.871 2.503 0.721 1.733
✓ ✓ ✓ ✗ ✗ 0.909 0.198 1.920 0.803 2.759 0.852 0.464 2.527 0.726 2.568
✓ ✗ ✓ ✗ ✓ 0.909 0.192 1.919 0.799 2.722 0.852 0.461 2.514 0.726 2.53
✓ ✗ ✗ ✓ ✓ 0.887 0.208 2.038 0.788 2.421 0.830 0.472 2.642 0.711 2.259
✓ ✓ ✗ ✗ ✓ 0.910 0.188 1.914 0.803 2.783 0.851 0.447 2.511 0.722 2.464
✓ ✓ ✓ ✓ ✗ 0.907 0.198 1.989 0.803 2.815 0.850 0.466 2.614 0.725 2.794
✓ ✓ ✓ ✗ ✓ 0.905 0.208 1.920 0.798 2.632 0.852 0.457 2.510 0.720 2.437
✓ ✓ ✓ ✓ ✓ 0.909 0.192 1.981 0.804 2.853 0.852 0.450 2.602 0.726 2.836

Table 2. loss weighting coefficients λi (i = 1, . . . , 5) as used in
Table 1.

KL CC SIM NSS MSE
1 0 0 0 0
0 -1 0 0 0
0 0 -1 0 0
0 0 0 -1 0
0 0 0 0 1

10 0 -3 0 0
10 0 0 -3 0
10 -3 0 0 0
10 0 0 0 5
0 -2 0 -1 0

10 -2 -1 0 0
10 0 -3 0 5
10 0 0 -3 5
10 -3 0 0 5
10 -2 -1 -1 0
10 -2 -1 0 5
10 -2 -1 -1 5

Table 3. Details of unseen datasets used for quantitative analysis
of SUM in Figure 2.

Dataset Image domain # Image Image Resolution

Toronto [2] Natural scene 120 681 × 511
TUD Image Quality Database 1 [4] Natural scene 29 768 × 512
TUD Image Quality Database 2 [1] Natural scene 160 600 × 600
FIWI [5] Web page 149 1360 × 768
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Figure 1. Visualizations of SUM’s predictions across different datasets. The first and second rows depict Natural Scene-Mouse data, while
the third and fourth rows showcase Natural Scene-Eye data. The fifth and sixth rows present E-commerce data, and the seventh and eighth
rows display UI data.
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Figure 2. Visualizations of SUM’s predictions across different datasets. The first and second rows showcase the Toronto dataset [2], while
the third and fourth rows present the FIWI dataset [5]. The fifth and sixth rows display data from the TUD Image Quality Database 1 [4],
and the seventh and eighth rows exhibit data from the TUD Image Quality Database 2 [1].
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