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In this supplementary material, we provide the following:

1. Details of material-consistent shadow edge extraction.

2. Correctness of the proposed CDD metric.

3. Using shadow edges from shadow detection models.

4. Further details of implementation.

5. Quantitative results on ISTD+ test set.

6. More results on the cross-dataset testing.

7. More qualitative results.

1. Details of Material-Consistent Shadow Edge
Extraction

We select only material-consistent shadow edges (MC-
Edges) and enforce color and texture consistency on both
sides of these edges in the shadow-removed outputs. These
constraints should not be enforced on shadow edges align-
ing with object boundaries, as both sides of those edges
should exhibit different shadow-free textures and col-
ors. To extract MC edges, we first use the provided
SamAutomaticMaskGenerator function from the Seg-
ment Anything Model (SAM) [5] to predict material masks,
and then sample edge pixels and patches where the material
masks intersect with the shadow mask. Details of the pro-
cess are described in Algorithm 1. More visual examples
of improved material mask segmentation by our fine-tuned
SAM are shown in Fig. 1.

To demonstrate the effectiveness of the fine-tuned SAM
in extracting material-consistent shadow edges, we com-
pare its performance to vanilla SAM on different mate-
rials. Tab. 1 presents the percentage of edge pixels ex-
tracted by each SAM model across various materials in
the ISTD+ dataset [6]. The results indicate that our pro-
posed method significantly outperforms vanilla SAM, suc-
cessfully extracting shadow edge pixels across different ma-
terial types.

Algorithm 1 Material-Consistent Shadow Edge Extraction
Data: Input shadow image I , shadow mask M ; Model:

Fine-tuned SAM fSAM

Result: Sampled shadow/shadow-free pairs, Pixelin/out
and Patchin/out

EdgePixels = {M − erode(M)}+ {dilate(M)−M}
SegMasks = MaskGenerator(fSAM , I,M)

for i = 1 → n do
if SegMasks[i] overlaps with M then

Get Pixelin/out in EdgePixels ∈ SegMasks[i]
Get Patchin/out in SegMasks[i]

else
continue

Input Vanilla SAM Fine-tuned SAM

Figure 1. Visual examples of improved material-consistent mask
segmentation by our fine-tuned SAM.

2. Correctness of the Proposed CDD Metric
To justify the correctness of our proposed Color Dis-

tribution Difference (CDD) metric, we first show that the
CDD value corresponds to the shadow intensity. As shown
in the top row of Fig. 2, we choose a shadow image and
manually adjust the shadow intensity. We find that the
weaker the shadow effect, the lower the CDD value, in-
dicating that the CDD metric can effectively represent the
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Table 1. Percentage of material-consistent shadow edge pixels de-
tected (recall%) via vanilla SAM and our fine-tuned SAM.

Material Type Vanilla SAM Fine-tuned SAM

grass 85.7 98.6
cement 63.6 96.0
ceramic 66.1 71.0
playground 75.6 82.8

Figure 2. Correctness of the Color Distribution Difference met-
ric. (top) We manually adjust the shadow intensity from strong to
weak, and the CDD values are lower when the shadow effect is
weaker. (bottom) We compare the CDD values of shadow images
and their shadow-free counterparts, the CDD value of the shadow-
free version is at least two orders of magnitude lower than that of
the shadow version. CDD is computed using the pixels marked in
the images and the values are reported in the images.

Figure 3. Validation of our proposed CDD metric on DTD [1].
We show examples from the subset and apply a simple method to
compute the CDD values on the DTD data using parallel lines in
the middle (see the red and green lines in each image). We can
see that this simple annotation still yields low CDD scores.

quality of shadow removal.
Additionally, we show the CDD results on ground truth

images from ISTD+ [6]. We compare the CDD values of
the shadow-free images against their shadow counterparts,
as shown in the bottom row of Fig. 2. The CDD values
for shadow-free images are at least two orders of magni-
tude lower than those for shadow images. Therefore, we
believe CDD can serve as a valuable metric for evaluating
shadow removal performance when ground truth images are
unavailable.

Finally, to validate the adequacy of our proposed CDD
metric in measuring consistency alongside shadow edges,
we select a subset from the DTD dataset [1], which we
believe showcases more complex textures than our pro-
posed shadow image dataset (Fig. 3). We evaluate the CDD
score on pixels from parallel lines in the middle of the im-
age. This result can be considered the upper bound of the
ground truth CDD score for our proposed dataset. The
CDD measurement on this selected subset is 0.0022, signif-

Table 2. Shadow detection results on the ISTD+ [6] and our pro-
posed dataset using SILT [11]. Following [11], the performance is
evaluated by the Balanced Error Rate (BER).

Dataset BER S NS

ISTD+ 1.12 0.80 1.44

Proposed 4.05 4.02 4.09

icantly lower than the shadow removal results in the main
paper (0.0157). This evaluation further demonstrates that
the proposed CDD metric can effectively serve as a valu-
able shadow removal evaluation metric.

3. Shadow Removal Refinement using Shadow
Edges from Shadow Detection Models

In our main paper, we conduct experiments using ground
truth shadow masks sourced from established datasets [4,
6, 10]. These masks might not be available for ideal au-
tomated shadow removal systems used in real-world sce-
narios. In this section, we show that our method can be
used with shadow masks detected from a shadow detection
method. We note that shadow detection is a relatively eas-
ier task compared to shadow removal and a robust, scalable
shadow detection system is more feasible since shadow de-
tection training data is much easier to obtain. At some point,
one can expect to obtain accurate shadow masks automati-
cally, which could be directly incorporated into our system
to improve shadow removal.

We use the state-of-the-art shadow detection method,
SILT [11], to generate shadow masks for each testing image.
Tab. 2 presents the detection performance on the two test-
ing datasets using SILT. Then, we compare the performance
of ShadowFormer [2] using ground truth shadow masks and
these detected shadow masks in Tab. 3. We find that on both
the ISTD+ dataset [6] and our proposed dataset, using de-
tected masks results in worse shadow removal performance
compared to using ground truth masks. A typical failure
case is shown in the top row of Fig. 4. Nevertheless, apply-
ing our method atop ShadowFormer [2] can improve perfor-
mance in both cases, as shown in Tab. 3. The bottom row of
Fig. 4 visualizes an example of how our method improves
the shadow-removal result.

4. Further Details of Implementation
4.1. Computation Overhead

Our approach iteratively refines the pre-trained model
using extracted self-supervision. During testing on our pro-
posed dataset, we update the entire model for 20 iterations
per image, resulting in an average overhead of 24 seconds
on an NVIDIA TITAN RTX GPU.



Table 3. Quantitative comparison of results using ground truth
shadow masks and SILT-detected shadow masks on [2] and
[2]+Ours. MAE and CDD values are reported. Note that CDD
is reported as 1000× the original value.

Methods
Proposed ISTD+

CDD MAE CDD

Mean Var S NS A Mean Var

[2] w. GT mask 25.0 40.8 5.3 2.2 2.7 1.5 2.6

Ours w. GT mask 15.9 30.2 5.0 2.2 2.7 1.0 1.6

[2] w. detected mask 25.8 42.4 6.2 2.6 3.1 2.7 9.8

Ours w. detected mask 19.3 38.5 5.7 2.5 3.0 2.4 8.4

Input Detected mask [2] Ours

Figure 4. Examples of using SILT [11] detected masks for shadow
removal refinement. The top row shows a failure case from ISTD+
[6], where the dark region is predicted as the shadow region, lead-
ing to an inaccurate shadow removal result that our refinement
method cannot rectify. The bottom row shows a successful case
from the proposed dataset, where an accurate shadow mask is pre-
dicted, and our refinement method improves the shadow removal
performance.

We further investigate the refining performance with dif-
ferent numbers of iterations and different model update
policies (e.g. updating only the last decoder layer of Shad-
owFormer [2]). The results are shown in Tab. 4. Break-
ing down the overhead, our shadow edge extraction process
takes 2 seconds, and each model update iteration requires
approximately 1 second. It is evident that the number of
iterations is the primary cause of our computational over-
head. Additionally, we found that partially updating the
model does not improve the efficiency of our refinement and
leads to decreased performance.

4.2. Number and Size of sampled patches

In the main paper, we sample 8 patches of size 16 × 16
in our final configuration. Here, we experiment with differ-
ent numbers and sizes of patches and compare the shadow
removal performance on our proposed dataset. As shown
in Tab. 5, these hyperparameters do not significantly affect
overall performance.

Table 4. Comparison of performance and computation overhead
using different numbers of iterations and update policies. We re-
port the CDD mean values on the full proposed test set.

# of Iter Update CDD Mean Overhead (s)

10 whole 17.6 13

20 whole 15.7 24

partial 19.1 24

30 whole 18.1 36

Table 5. Quantitative comparison of using different numbers and
sizes of sampled patches in our final configuration. Note that CDD
values are reported as 1000× the original value.

Number

CDD Mean/Std. Size
8× 8 16× 16 32× 32

4 15.7/29.1 15.7/29.1 15.7/29.1
8 15.7/29.2 15.7/29.1 15.7/29.0

16 15.8/29.2 15.7/29.1 15.7/29.1

Table 6. Detailed hyperparameter settings used in SAM [5],
SP+M-Net [6], and ShadowFormer [2].

Hyperparameter Value Hyperparameter Value

SAM ShadowFormer

point per side 16 input size (640,480)

predict iou thres 0.90 train ps 320

stability score thres 0.90 embed dim 32

min mask region area 500 win size 10

SP+M-Net token projection linear

input size (512,512) token mlp leff

4.3. Test Settings

We provide detailed hyperparameter settings for SAM
[5], SP+M-Net [6], and ShadowFormer [2] in Tab. 6. For
SAM, we use the vit b model with the learning rate set to
1e−4. During fine-tuning, we extract 32 points per image
as prompts. By enabling multimask output = True for
the mask decoder, we calculate the mean Dice loss [9] over
three output masks per prompt.

4.4. MC-Edge Annotations for the ISTD+

To provide CDD evaluation on the ISTD+ [6] dataset, we
annotate the MC-edges in each image in a semi-automatic
manner. Among the 46 unique scenes in the ISTD+ test set,
we observe that 42 do not exhibit partial shadow edges co-
inciding with object boundaries. For these scenes, we sim-
ply erode and dilate the original shadow mask, then perform
subtraction to get the pixels near the shadow edge. In the re-



(a) Automatic annotation (b) Manual annotation

Figure 5. Examples of shadow edge pixel annotation in the ISTD+
[6]. (a) shows automatic annotation on 42 scenes using eroded and
dilated shadow masks, (b) shows manual annotation of material-
consistent pixels on 4 scenes where shadow edges coincide with
object boundaries.

Table 7. Comparison with SOTA models. We compare the per-
formance of pre-trained models and models using our adaptation
method on the ISTD+ [6] dataset. MAE and CDD are reported,
note that CDD is reported in 1000× the original value.

Methods
ISTD+

MAE CDD

Shadow NonShadow All Mean Var

Input 40.2 2.6 8.5 148.5 90.0

Inpaint4Shadow [7] 5.9 2.9 3.4 2.1 4.3

ShadowDiffusion [3] 4.9 2.3 2.7 / /

SP+M-Net [6] 7.3 2.5 3.3 3.2 3.8
SP+M-Net+Ours 6.1 2.5 3.1 1.6 2.6

ShadowFormer [2] 5.3 2.2 2.7 1.5 2.6
ShadowFormer+Ours 5.0 2.2 2.7 1.0 1.6

maining four scenes, we manually annotate the MC-edges
(as depicted in Fig. 5).

5. Quantitative Results on ISTD+ Test Set
Recent improvements in shadow removal on ISTD+ [6]

have reached saturation. The test set comprises multiple
images from scenes similar to those in the training set, with
shadows cast by objects outside the captured scene. State-
of-the-art (SOTA) methods effectively learn the mapping
between shadow and shadow-free pairs, already yielding
satisfactory results. In Tab. 7, we compare our method with
SOTA methods. Our method achieves performance com-
parable to SOTA methods. Although our method improves
shadow removal on several challenging cases in ISTD+, the
overall performance does not significantly surpass the well-
trained existing methods on simple shadow images. This
further supports the need to extend shadow removal tech-
niques to general shadow images in real-world scenarios.

6. More Results on the Cross-Dataset Testing
6.1. Effect of Non-Shadow Loss

Lnonshadow is specifically designed to mitigate the er-
rors caused by prior models pre-trained on data pairs with

Table 8. Quantitative results on cross-dataset testing comparing
the effect of Lnonshadow. ISTD pre-trained ShadowFormer and
SRD pre-trained ShadowFormer are tested on the ISTD+ test set.

Trained On Tested On Methods MAE CDD

S NS A Mean Var

SRD ISTD+
prior model 13.7 3.4 5.1 55.0 43.3

w.o. Lnonshadow 6.4 2.9 3.5 15.8 13.6

w. Lnonshadow 6.2 2.4 3.0 8.0 9.4

ISTD ISTD+
prior model 10.6 6.3 7.0 11.8 17.7

w.o. Lnonshadow 6.2 6.5 6.3 9.8 15.2

w. Lnonshadow 6.3 2.7 3.4 1.0 3.1

(a) Input (b) [2] (c) [2]+Ours (d) GT

Figure 6. Qualitative comparison of cross-dataset testing. We
use the SRD [8] pre-trained ShadowFormer [2] and test it on the
ISTD+ test set. (a) shows the input image, (b) shows the Shad-
owFormer result, (c) presents the results with refinement, and (d)
presents the ground truth. We also report shadow region (S) and
overall (A) MAE results.

light intensity inconsistencies. In Tab. 8, we can see that our
proposed method outperforms the pre-trained models, and
incorporating Lnonshadow further improves performance by
correcting the non-shadow region.

6.2. Qualitative results on SRD pre-trained model

Here, we show additional qualitative results from cross-
dataset testing, where we use a ShadowFormer [2] pre-
trained on the SRD [8] to test on ISTD+ [6] images, both
with and without our refinement method. As depicted in
Fig. 6, the pre-trained model does not perform well on
out-of-distribution shadow images, while our refinement
method significantly improves the performance.

7. More Qualitative Results
Qualitative results on refining the SRD pre-trained Shad-

owDiffusion [3] are provided in Fig. 7. We then present
qualitative results on test cases containing soft shadows and
attached shadows in Fig. 8. Additional results on our pro-
posed test set, using our method applied to SP+M-Net [6]



Input [3] [3]+Ours

Figure 7. Qualitative results on our proposed dataset. (a) shows in-
put image, (b) shows ShadowDiffusion [3] result, and (c) presents
the results after refinement.

and ShadowFormer [2], are shown in Fig. 9 and Fig. 10. Fi-
nally, Fig. 11 presents qualitative results on the ISTD+ test
set using our method applied to ShadowFormer.



(a) Input (b) ShadowFormer (c) ShadowFormer+Ours

Figure 8. Qualitative results on soft shadows and attached shadows. The top two rows show results on soft shadows which are easier cases
for the prior model [2], and the bottom two rows show results on self-cast shadows which confuses the prior model. However, our method
also cannot fully address the attached shadows.



(a) Input (b) ShadowFormer (c) ShadowFormer+Ours

Figure 9. Qualitative results on our proposed dataset. (a) shows input image, (b) shows ShadowFormer [2] result, and (c) presents the
results after refinement.



(a) Input (b) SP+M-Net (c) SP+M-Net+Ours

Figure 10. Qualitative results on our proposed dataset. (a) shows input image, (b) shows SP+M-Net [6] result, and (c) presents the results
after refinement.



(a) Input (b) [2] (c) [2]+Ours (d) GT

Figure 11. More qualitative results on ISTD+ [6]. (a) shows input image, (b) shows ShadowFormer [2] result, (c) presents the results using
our refinement method, and (d) shows the ground truth.
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