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A. More on the Network Architectures of the Time-Pose Function

Figure 1. Architecture. Our implementation of the Time-Pose Function with a multi-resolution hash grid.

Multi-resolution Hash Grid This part additionally introduces the details of our implementation of the time-pose function.
For the queried time-stamp ti, the hash encoding of ⌊xi⌋ − 1, ⌊xi⌋, and ⌊xi⌋ + 1 are extracted in each layer G(l) of the
multi-resolution hash grid. We perform quadratic interpolation on the extracted hash feature:
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The interpolated feature are then concatenated together Vi = concat{V l
i}Ll=1. ( 1).

MLP-based This part introduces the details of the MLP-based implementation of the time-pose function. We use a 10-layer
MLP with 1024 dimensions in each layer, including a skip connection that concatenates the timestamp input to the 5th layer.
The input timestamp is encoded by the MLP to obtain feature encoding Vi. Two fully connected layers are placed after the
shared MLP to decode the feature vector Vi to the camera pose. (Fig. 2).
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Figure 2. Architecture. The MLP-based implementation of the Time-Pose Function.

1-D Feature Grid The 1-D feature grid version of the implementation has the same feature grid representation and interpolation
functions as our multi-resolution hash feature grid, except for the hash encoding and multiple grid layers. (Fig. 3).
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Figure 3. Architecture. The 1-D feature grid-based implementation of the Time-Pose Function.

Ground-truth Ours Mega-NeRF-Depth

Figure 4. Qualitative results of the comparison of ours with Mega-NeRF-Depth.
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Figure 5. Data Example. RGB images and the corresponding timestamps in each AUS trajectory.

B. Comparison with Mega-NeRF-Depth
The estimated depth camera pose from the time-pose function is acceptable, but not sufficient for direct use to supervise

scene geometry. We compared our method against Mega-NeRF [5] with depth supervision that takes the time-pose function
output as depth camera poses. The qualitative results (Fig. 4) and the quantitative results (Table. 3 in the main paper)
show that the direct use of outputted camera pose may help increase the performance of Mega-NeRF in depth prediction.
However, the depth prediction results obtained in this way have significant artifacts at the edges of the scene, and in addition,
Mega-NeRF-Depth is even inferior to the baseline method that uses only RGB as supervision in rendering RGB images.

C. The AUS Dataset
Capture Settings Our data were collected using a simulator [3] on several city scene models [1, 4] that have been built. We
took RGB pictures and depth maps of the scene from an overhead view by crossing the scene with a virtual drone following a
given path.

We showed some of the captured images along with their timestamps in Fig. 5.
Since the output of our simulator is a dense RGB image and depth map, we randomly down-sample the dense depth map to

a sparser depth map during training to better simulate the real drone shooting data, and in the evaluation process, we use the
full depth map to calculate the evaluation metrics for model depth prediction.
Data Scale Table. 1 presents the number of images across all scenes. The image resolution is 960x480 pixels and the
trajectories are presented in Fig. 6 and Fig. 7.
More results Due to the large size of the dataset, we have selected a few representative samples to showcase our results in the
paper. Full results in all scenes are presented in Fig. 8.
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Figure 6. A top-view of the trajectories covered in AUS-NY and AUS-SF.

Bridge Town School Castle

Figure 7. A top-view of the trajectories covered in AUS-Virtual scenes.

Table 1. Data scale of each scene in AUS Dataset.

Scene Train set Validation set

AUS-NY Simple 45 12
AUS-NY Hard 73 11
AUS-NY Manual 100 11
AUS-SF Simple 151 11
AUS-SF Hard 101 11
AUS-SF Manual 262 11
Bridge 213 11
Town 108 11
School 156 11
Castle 62 11

D. Real-world Dataset
Fig. 9 shows four sets of pictures collected from the real-world dataset using a DJI M300 UAV, equipped with a high-

definition RGB camera and LiDAR. The RGB camera captures images at a frame rate of 30 fps, while the LiDAR collects
depth information at 240 Hz. In this community scene, the UAV flies in a zigzag pattern to gather data, with a maximum flight
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Figure 8. Qualitative Results of all scenes in AUS Dataset.

Figure 9. Real-world dataset.

speed of approximately 23 m/s.

E. Limitations
Despite the promising results of the time-pose function for localization and the realistic rendered images, our system still

has limitations:



• The time-pose function learns only from the time-pose trajectory prior, failing to leverage the imagery features.
Combining the time-pose function with traditional pose regressors may be a good future work;

• Our scene representation has similar limitations to those of the original NeRF like pose accuracy sensitive and slow
converging. However, recent advances in improving NeRF are easy to transfer to our model as the model structure in
our scene representation is similar to the original NeRF [2].
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