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2. Discussion of Potential Negative Societal Im-
pact
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3. Fine-tuning and Inference

For downstream ReID tasks, we use only the teacher’s
shared encoder and the resampler, discarding the student, all
heads in the teacher, and the local semantic extraction mod-
ule. We then fine-tune the teacher using ReID task losses,
including cross-entropy loss for classifying different identi-
ties and triplet loss [5] for clustering the same identity.

During inference, VILLS automatically extracts all fea-
tures. For an input image, VILLS extracts coarse-grained
and semantically consistent features. For an input video,
VILLS also extracts temporal features. These features are
then used for person matching, retrieval, or visualization
based on the specific task.

4. Implementation Details
For the Unified Feature Learning and Adaptation mod-

ule, we use a Vision Transformer (ViT) [2] as the shared
encoder backbone. The resampler is a Perceiver Trans-
former [7], which consists of a small transformer layer with
cross attention. All heads are constructed using Multi-Layer
Perceptrons with Batch Normalization [6]. For the local se-
mantic extraction (LSE) module, we use a pre-trained Mask
R-CNN [4] from the COCO dataset [9], while the interac-
tive segmentation model is based on the pre-trained Seg-
ment Anything Model [8].

During pre-training, we train ViT-S and ViT-B on 8×
A40 GPUs for 100 epochs. The training process takes ap-
proximately 100 and 200 hours for ViT-S and ViT-B, re-
spectively. We use video batch sizes of 32 (ViT-S) and 16
(ViT-B), and image batch sizes of 128 (ViT-S) and 64 (ViT-
B). The video frame size is set to 64 × 44, with each video
randomly sampling 8 frames. The image size is 256 × 128.
The LSE-derived feature size is 128 × 64. The local areas
are defined as head, upper body, and lower body. The bal-
ancing parameters λ1, λ2, λ3, and λ4 are set to 1.0, 1.0, 3.0,
and 2.0, respectively.

For downstream ReID tasks, we follow standard settings
for each task and dataset. In PRCC and LTCC, the input size
is 384 × 192. In Market1501, the input size is 256 × 128.
In PRID2011 and MARS, the input size is 8×256×128. In
BRIAR-2, BRIAR-3, and BRIAR-4, the input is 384 × 128
for images and 8× 384× 128 for videos. Unless otherwise
specififed, all main results are conducted using ViT-B, while
ablation studies are conducted using ViT-S.

5. Visualization of Attention Maps
Fig. 1 compares attention maps between our method and

others across different tasks. For image-based ReID, our
coarse-grained spatial features outperform others. While
existing methods lack a complete semantic concept of iden-
tity and focuses on peripheral parts, the proposed method
clearly captures a complete identity with accurate focus.
Moreover, our attention is semantically consistent, showing
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Figure 1. Visualization of attentions across different ReID methods. For SOLIDER, each attention map represents windowed attention. In
image-based ReID, the first attention map for both PASS and VILLS is derived from coarse spatial features. The second and third attention
maps for PASS are generated from local features, while for VILLS, they are generated from the LSE-derived features. In video-based
ReID, all attention maps for PASS are derived from local features, whereas VILLS utilizes temporal features for all its attention maps.
Notably, VILLS demonstrates semantically consistent attention patterns across both images and videos, highlighting its unified method to
feature extraction.

clear focus on specific body parts (e.g., arms, thighs). These
results demonstrate the effectiveness of our method, partic-
ularly the LSE module, in extracting semantically consis-
tent spatial features.

In video-based ReID, most methods lack temporal fea-
tures, resulting in incomplete attention that fails to connect
across frames. In contrast, the attention behavior in VILLS
shows clear motion patterns highly consistent with the orig-
inal video. Furthermore, the attention consistently focuses
on the most significant motion parts of the identity. These
results highlight the effectiveness of UFLA module in suc-
cessfully extracting temporal features. In summary, these
visualizations showcase VILLS’ ability to effectively and
seamlessly extract both spatial and temporal features. These
visualizations provide strong qualitative evidence for the
effectiveness of VILLS in capturing semantically consis-
tent and modality-appropriate features across various ReID
tasks.

6. Test Accuracy Curves

Fig. 2 illustrates the test accuracy curves for our method
and state-of-the-art (SOTA) methods on image-based ReID.
Notably, our method achieves a rank-1 accuracy of 58.4%
by epoch 3, outperforming other methods. In comparison,
PASS (Zhu et al. 2022) reaches a rank-1 accuracy of 52.4%
in epoch 11, while CAL [3] achieves 55.3% in epoch 39,
demonstrating the effectiveness of our method.

A comparison between pre-training methods (PASS
[11], SOLIDER [1], HAP [10], and VILLS) and methods
specifically designed for this dataset (e.g., CAL [3]) reveals
that pre-training methods converge faster. However, their
performance falls short of dataset-specific methods. VILLS
stands out by not only surpassing other pre-training meth-
ods but also outperforming dataset-specific methods. More-
over, VILLS converges in fewer epochs, highlighting both
its effectiveness and efficiency.
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Figure 2. Test accuracy curves for various methods on the PRCC
dataset. VILLS achieves the highest performance in the fewest
epochs. This experiment was conducted using the image-only ver-
sion of VILLS with ViT-B.
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