
Appendix
We provide details of the algorithm for searching the op-

timal stealing rate in Appendix A and extended experimen-
tal evaluations in Appendix B.

A. Algorithm Descriptions
For the stealing rate, we discuss how it scales stolen fea-

tures from the branch and evaluate the knockoff quality for
a given stealing rate in Section 3.4. Moreover, we assume
α ∈ R, the high accuracy knockoff should achieve a steal-
ing rate of 1.0 and the sub-optimal knockoff is between 0.0
to 1.0. However, determining the optimal stealing rate is
expensive since we have to test all possible values on each
test set. We further assume that the accuracy curve which
varies by different stealing rates in the same evaluations is
a smooth concave curve.

We provide a concise version of the algorithm for de-
termining the best virtual knockoff in Algorithm 1, which
involves the following steps: 1) Sampling phase: It samples
numbers evenly for a given range as the stealing rate list
Lα. 2) Evaluation phase: It evaluates each value from Lα

and records the result in Lc. 3) Next iteration phase: It sets
a new sampling range (s, e) for the next iteration. In prior
experiments, we set fixed iterations to 3, which compute the
number of decimals to 3 for all stealing rates.

Algorithm 1 Searching the best virtual knockoff

Require: Dataset D, Knockoff K, number of iterations i,
number of samples n, start value s, end value e.

1: Find optimal stealing rate α∗ by evaluating Lα in the
range of s to e on D.

2: for each iteration 1, 2, ..., i do
3: Lα = getSamples(s, e, n)
4: Create empty list Lc for Lα

5: for each stealing rate α in Lα do
6: acc = evaluate(D,K,α)
7: Append acc to Lc

8: end for
9: j = argmax(Lc)

10: s = Lα[j − 1]
11: e = Lα[j + 1]
12: end for
13: return Lα[j]

B. Additional Experiments
We present an experiment for the possible limitations

of ImageNet pretrained models, training the model from
scratch for the victim model. We use publicly available
ResNet-34 models from the timm library for CIFAR10 and
CIFAR100 while training the models for Caltech256 and

Method Caltech256 CIFAR10 CIFAR100 Indoor67

FV 69.56% (1×) 95.40% (1×) 77.06% (1×) 65.07% (1×)
KnockoffNets [15] 67.76% (0.974×) 82.20% (0.862×) 57.38% (0.745×) 59.92% (0.921×)
Transformer-B [2] 68.62% (0.986×) 84.62% (0.887×) 63.07% (0.818×) 62.01% (0.953×)

Ours/base
67.81% (0.975×)
(*72.68%, 0.579)

87.59% (0.918×)
(*89.90%, 0.679)

59.47% (0.772×)
(*62.18%, 0.679)

58.88% (0.905×)
(*62.68%, 0.517)

Ours/alpha
73.42% (1.055×)
(*73.45%, 1.052)

90.64% (0.950×)
(*90.75%, 1.073)

64.31% (0.835×)
(*64.32%, 1.032)

63.58% (0.977×)
(*63.58%, 1.0)

Table 4. Experimentation Results.

Indoor67 by ourselves. Other experimental settings remain
consistent as prior.

The accuracy of the victim model and the adversary
model reported in Table 4. We find the victim influences
the adversary model’s performance. The victim model pro-
vided by timm uses randomly initialized weight but is well-
tuned. It performs with higher accuracy than the pretrained
version, increases 8.46% on CIFAR10 and 14.92% on CI-
FAR100. For the adversary model, our approach and base-
lines show an improvement of 3%-8% on CIFAR10 and
6%-10% on CIFAR100. For the Caltech256 and Indoor67,
the victim model is slightly lower than the pretrained ver-
sion, and the accuracy of each adversary model also slightly
decreases. Notably, the recovery rates (Acc(FV )/Acc(FA))
are similar to those reported in Table 2. The alpha branch
still performs the improved accuracies of 4.8%, 6.02%,
1.24%, and 1.57% compared to baselines.


