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Appendix
In this section, we provide additional experimental re-

sults and details not presented in the main paper.

A. Additional Implementation Details
We primarily adopt the hyperparameters from Action-

Former [20] and ViFi-CLIP [14] since our architecture is
based on them. As addressed in Sec. 4.1, the ActivityNet [2]
dataset differs significantly from the THUMOS14 [4] and
FineAction [9] datasets. It consists of only 1 – 2 long action
instances, limiting the evaluation of the capability in action
localization. Accordingly, we adjust hyperparameters for
the ActivityNet dataset, following the TAL literature.

A.1. Video Feature Extraction Details

Here, we detail the video feature extraction process us-
ing VLMs. As stated in Sec. 4.3, we extract the video
snippet features (FV ) using the conventional sliding win-
dow manner with a window size of 16 frames and a stride
size of 4 frames, after interpolating videos into 30 fps. For
ActivityNet, we interpolate FV to a fixed length follow-
ing the widely used convention [7, 8, 18, 20]. Specifically,
each video is interpolated to a length of 192 feature vec-
tors, as employed in ActionFormer [20]. For THUMOS14
and FineAction, we retain the video snippet features in their
original length. When we conduct experiments with Vi-
CLIP [17] VLM model, we interpolate its learned tempo-
ral embedding from 8 to 16 to use the same window size
for video feature extraction. Note that such details are often
absent in existing OV-TAL methods [5, 11], making it chal-
lenging to reproduce their results. We open-source the ex-
tracted features to promote further development in the OV-
TAL community.

A.2. STOV-TAL Inference Details

Compared to ActionFormer [20], we use the class-
agnostic action localizer and assign the action classes from
the VLM. As a result of this change, we delay the Soft-
NMS operation until after the action classes are assigned,
rather than immediately following the output of the action

localizer. On the other hand, when we compute pseudo la-
bels on unlabeled videos, we directly perform Soft-NMS on
the class-agnostic action instances, based on its actionness
score (sa). We employ the same Soft-NMS configurations
for both cases, with slight variations based on the dataset.
We choose the top 100 scoring action instances for Activ-
ityNet and 200 for THUMOS14 and FineAction, applying
a minimum confidence score threshold of 0.001 and a tIoU
threshold of 0.1.

A.3. Gemini Inference Details

We provide the instruction template used for Gemini to
perform the TAL task in Fig. 1. To incorporate temporal
information effectively, we adopt an interleaved format, as
shown in Fig. 1 {time instructed video data}, where RGB
frame data alternates with its corresponding temporal in-
formation data throughout the entire video sequence. This
ensures that both the visual content and temporal details are
presented simultaneously. We also experimented with an-
other format, which provides temporal information after all
RGB frame data, following this structure: “These frames
are located at {frame time list}.” However, Gemini was un-
able to effectively perform TAL with this instruction format.
The maximum length of the Gemini output is set to 4096.
For parsing Gemini’s response to TAL format, we employ
the regular expression of (R,R,Z,R), where R represents
real numbers and Z represents integers. Additionally, we
filter out results where the class index falls outside the valid
range, which is between 0 and |C| − 1.

Recently, Wake et al. [15] introduced the T-PIVOT
method for TAL using GPT-4o. Due to the limited context
length of GPT-4o, which cannot accommodate the densely
sampled frames of long videos, T-PIVOT progressively nar-
rows the search window over time. In contrast, our Gemini-
based method can detect all action instances for the target
categories in a single iteration, avoiding the need for multi-
ple API calls.

A.4. Selection of Previous Methods for OV-TAL

Including the results of existing OV-TAL methods [5,
11, 12] in our proposed OV-TAL benchmarks would be a
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You are an intelligent question answering agent. I will ask you question about temporal action localization and you must detect action 

instances in a video. 

You will be shown a set of frames that have been extracted from a single video. 

Given the video frames, you must answer the tuple of (start_time_of_action, end_time_of_action, category_index_of_action, 

confidence_score_of_action).

Note that the time is in second and rounded to the second decimal place, confidence score is the number between 0 and 1 and is rounded to 

the fourth decimal place, and the list of target action categories are provided below.

Here is the list of target action category and its correponding index.

[Target Action Category]

{action_cls_map}

You must output `text` to answer the detected action instances.

For your reference, we provide the example of output format with five detected action instances.

[Output]

(0.00, 6.50, 5, 0.7515), (5.88, 9.50, 3, 0.8805), (10.00, 15.25, 0, 0.9523), (12.50, 40.00, 11, 0.6789), (80.35, 123.50, 15, 0.8792)

Now frames of a video and its extracted temporal information are provided below.

{time_instructed_video_data}

Please detect all action instances of actions listed in [Target Action Category].

[Output]

This video lasts for 

{video_time:.2f} 

second.

{time_instructed_video_data}

{action_cls_map}

Action_classname_0: 0

Action_classname_1: 1

Action_classname_2: 2

…..

This frame is 

sampled at {t:.2f} 

second.

Frame 

#1 

This frame is 

sampled at {t:.2f} 

second.

Frame 

#2 

This frame is 

sampled at {t:.2f} 

second.

Frame 

#3 

Figure 1. Gemini instruction template for TAL.

good practice to ensure a sufficient comparison. However,
due to the difficulty of reproducing their results1, we in-
stead choose OpenTAL [1], which focuses on localizing ac-
tions unseen during training through uncertainty modeling.
We train it on the base categories defined in our OV-TAL
benchmark and use it as the class-agnostic action localizer
in our decoupled architecture. Although OpenTAL utilizes
the I3D [3] backbone for action localization, we assign ac-
tion classes to output action instances using ViFi-CLIP [14],
as same as our model. Thus, comparing its mAPs with ours
solely evaluates the capability of action localization.

In terms of EffPrompt [5], the details about the action
localization model is not enough to reproduce by ourselves.
As it also adopted decoupled architecture as ours, we use
our action localizer, but replace the action classifier with the
prompt-tuned VLM. Most of the training details of prompt
tuning are borrowed from EffPrompt [5], but we empirically
find the training iterations for training it on THOMOS14 [4]
and FineAction [9].

1In Issue 1 and Issue 2, the author mentioned that the method exploits
UNet [16] as the external action classifier which is trained on all action
classes in the dataset.

A.5. Training Details

AdamW [10] is chosen as the optimizer, coupled with a
scheduler that linearly warms up the learning rate (lr) to its
maximum value and decays to the minimum value (1e−8)
following a cosine function. Tab. 1 presents the hyperpa-
rameter values for each dataset. For the OD-ST experiments
on THUMOS14, we use the subset of 100k videos. We em-
pirically found the threshold values for obtaining pseudo
labels. 0.2, 0.05, and 0.4 are used for ActivityNet, THU-
MOS14, and FineAction, respectively.

B. Additional Experimental Results
B.1. ActivityNet Results for OV-TAL Benchmark

The main paper presents the cross-category OV-TAL
benchmark results of the THUMOS14 [4] and FineAc-
tion [9] datasets in Tab. 4 (Main). Here, we show the re-
sults of the ActivityNet v1.3 [2] in Tab. 2. As discussed
in Sec. 4.6, ActivityNet v1.3 is not a proper dataset for
evaluating the generalization capability in action localiza-
tion, supported by the zero-shot performance (w/o ST) of
action localization on par with that of full-shot in Tab. 6
(Main). In the proposed OV-TAL benchmark, we observe

https://github.com/sauradip/STALE/issues/8
https://github.com/sauradip/STALE/issues/23#issuecomment-1704056365


Dataset Stage max lr warm-up epoch main epoch batch size

ActivityNet First 1e−5 5 10 16
Second 1e−5 5 5 16

THUMOS14 First 1e−4 5 30 2
Second (ID-ST) 1e−4 5 10 2

FineAction First 1e−5 5 10 4
Second (ID-ST) 1e−5 5 5 4

THUMOS14 Second (OD-ST) 1e−5 2 2 4FineAction

Table 1. Training hyperparameters values.

Methods Backbone
ActivityNet

Generalized Constrained
mAP50

A mAP50
B mAP50

N mAP50
B mAP50

N

OpenTAL† [1] I3D [3] 32.7 36.4 29.7 39.1 34.1
STOV-TAL (w/o ST) ViFi-B [14] 42.9 47.5 39.1 51.3 44.1
STOV-TAL (ID-ST) ViFi-B [14] 43.1 47.3 39.7 51.1 44.6
STOV-TAL (FS) ViFi-B [14] 43.7 47.9 40.3 52.0 45.3

Table 2. Evaluation of cross-category OV-TAL benchmark. For
reference of upper-bound, full-shot results are shown in gray. † is
our reproduced result.

a similar trend. For instance, in the constrained setting,
mAP50

N of w/o ST and FS are 44.1 and 45.3, respectively.
Based on these results, we decided not to include the Activ-
ityNet dataset in the OV-TAL benchmark since there is only
a small room for improvement in cross-category generaliza-
tion ability.

B.2. ZS-TAL Benchmark Full Results

Due to space constraints, we present only partial results
of the ZS-TAL benchmark in Tab. 6 (Main). In Tab. 3,
we provide the complete results, which complement the
tIoU values of 0.4 and 0.6 for TH14, and 0.95 for ANET.
These results exhibit a similar trend to those presented in
the main paper. In the case of full-shot results (100% Seen
0% Unseen), other methods achieve higher mAP, which is
attributed to the use of fine-tuned classifiers. These meth-
ods fine-tune the action classifiers on the target action cate-
gories, resulting in identical action categories during train-
ing and testing. In contrast, we keep freeze and do not fine-
tune the VLM for the target actions, and ours perform bet-
ter for zero-shot settings. Therefore, the 100% Seen 0%
Unseen results do not reflect the generalization ability of
action localizers.

References
[1] Wentao Bao, Qi Yu, and Yu Kong. Opental: Towards open

set temporal action localization. In CVPR, pages 2979–2989,
2022. 2, 3

[2] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,
and Juan Carlos Niebles. Activitynet: A large-scale video

benchmark for human activity understanding. In CVPR,
pages 961–970, 2015. 1, 2, 4

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In CVPR,
pages 6299–6308, 2017. 2, 3

[4] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban,
Ivan Laptev, Rahul Sukthankar, and Mubarak Shah. The thu-
mos challenge on action recognition for videos “in the wild”.
CVIU, 155:1–23, 2017. 1, 2, 4

[5] Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and Weidi
Xie. Prompting visual-language models for efficient video
understanding. In ECCV, pages 105–124. Springer, 2022. 1,
2, 4

[6] Chen Ju, Zeqian Li, Peisen Zhao, Ya Zhang, Xiaopeng
Zhang, Qi Tian, Yanfeng Wang, and Weidi Xie. Multi-modal
prompting for low-shot temporal action localization. arXiv
preprint arXiv:2303.11732, 2023. 4

[7] Chuming Lin, Chengming Xu, Donghao Luo, Yabiao Wang,
Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, and Yan-
wei Fu. Learning salient boundary feature for anchor-free
temporal action localization. In CVPR, pages 3320–3329,
2021. 1

[8] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen.
Bmn: Boundary-matching network for temporal action pro-
posal generation. In ICCV, pages 3889–3898, 2019. 1

[9] Yi Liu, Limin Wang, Yali Wang, Xiao Ma, and Yu Qiao.
Fineaction: A fine-grained video dataset for temporal action
localization. IEEE TIP, 31:6937–6950, 2022. 1, 2

[10] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 2

[11] Sauradip Nag, Xiatian Zhu, Yi-Zhe Song, and Tao Xi-
ang. Zero-shot temporal action detection via vision-language
prompting. In ECCV, pages 681–697. Springer, 2022. 1, 4

[12] Thinh Phan, Khoa Vo, Duy Le, Gianfranco Doretto, Donald
Adjeroh, and Ngan Le. Zeetad: Adapting pretrained vision-
language model for zero-shot end-to-end temporal action de-
tection. In WACV, pages 7046–7055, 2024. 1

[13] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, volume 139, pages 8748–8763. PMLR,
2021. 4



Evaluation
Setting Methods Backbone THUMOS14 [4] ActivityNet v1.3 [2]

0.3 0.4 0.5 0.6 0.7 Avg. 0.5 0.75 0.95 Avg.

Full-shot
100% Seen
0% Unseen

ActionFormer† [20] ViFi-CLIP-B [14] 72.8 67.4 57.3 45.2 29.7 54.5 49.5 31.2 4.3 30.9
EffPrompt [5] CLIP-B [13] 50.8 44.1 35.8 25.7 15.7 34.5 44.0 27.0 5.1 27.3
STALE [11] CLIP-B [13] 60.6 53.2 44.6 36.8 26.7 44.4 54.3 34.0 7.7 34.3
UnLoc [19] CLIP-B [13] - - - - - - 54.6 - - -
UnLoc [19] CLIP-L [13] - - - - - - 59.3 - - -
STOV-TAL (FS) CLIP-B [13] 47.5 41.7 33.0 24.7 15.4 32.5 37.5 23.1 1.8 22.7
STOV-TAL (FS) ViFi-CLIP-B [14] 65.3 60.6 50.2 39.0 26.0 48.2 43.7 26.8 2.0 26.4

Zero-shot
75% Seen
25% Unseen

EffPrompt [5] CLIP-B [13] 39.7 31.6 23.0 14.9 7.5 23.3 37.6 22.9 3.8 23.1
STALE [11] CLIP-B [13] 40.5 32.3 23.5 15.3 7.6 23.8 38.2 25.2 6.0 24.9
UnLoc [19] CLIP-B [13] - - - - - - 40.2 - - -
UnLoc [19] CLIP-L [13] - - - - - - 48.8 - - -
Ju et al. [6] CLIP-B [13] 46.3 39.0 29.5 18.3 8.7 28.4 42.0 25.8 3.2 25.9
STOV-TAL (w/o ST) CLIP-B [13] 47.8 39.1 28.4 17.6 9.1 28.4 47.0 28.1 1.6 27.9
STOV-TAL (w/o ST) ViFi-CLIP-B [14] 56.7 47.2 34.3 22.8 11.3 34.5 51.7 30.9 1.8 30.5
STOV-TAL (ID-ST) ViFi-CLIP-B [14] 59.5 50.2 37.5 24.6 12.5 36.9 52.0 30.6 1.2 30.1
STOV-TAL (OD-ST) ViFi-CLIP-B [14] 58.2 48.2 35.1 23.0 11.8 35.2 - - - -
STOV-TAL (FS) ViFi-CLIP-B [14] 67.5 60.8 47.7 34.8 21.8 46.5 52.6 31.5 2.3 31.3

Zero-shot
50% Seen
50% Unseen

EffPrompt [5] CLIP-B [13] 37.2 29.6 21.6 14.0 7.2 21.9 32.0 19.3 2.9 19.6
STALE [11] CLIP-B [13] 38.3 30.7 21.2 13.8 7.0 22.2 32.1 20.7 5.9 20.5
UnLoc [19] CLIP-B [13] - - - - - - 36.9 - - -
UnLoc [19] CLIP-L [13] - - - - - - 43.7 - - -
Ju et al. [6] CLIP-B [13] 42.3 34.7 25.8 16.2 7.5 25.3 34.3 20.8 3.0 21.0
STOV-TAL (w/o ST) CLIP-B [13] 44.2 35.7 25.7 16.5 8.0 26.0 42.1 25.0 1.3 24.8
STOV-TAL (w/o ST) ViFi-CLIP-B [14] 53.4 43.1 31.3 19.7 9.8 31.5 48.1 28.4 1.3 28.0
STOV-TAL (ID-ST) ViFi-CLIP-B [14] 56.3 46.1 34.4 21.9 11.3 34.0 48.4 28.7 0.8 27.9
STOV-TAL (OD-ST) ViFi-CLIP-B [14] 54.3 43.7 32.5 21.4 10.6 32.5 - - - -
STOV-TAL (FS) ViFi-CLIP-B [14] 68.2 62.5 50.7 38.2 24.6 48.8 49.4 29.9 2.2 29.6

Table 3. Evaluation of ZS-TAL benchmark. The results are based on RGB only without optical flow. In each setting, the best for each
metric is bolded. Full-shot results are shown in gray for reference of upper-bound. † indicates our reproduced results. The values not
provided are filled by “-”.
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