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Pattern Method

Synthetic data (Lego) Real data (Dog)

w ambient
w/o 

ambient
w ambient

w/o 

ambient

No NeuS 6.91 8.92 (+2.01) 7.62 8.45 (+0.83)

Random dot
USSL

6.47 7.07 (+0.60) 7.36 7.79 (+0.43)

Hamming 6.84 7.31 (+0.47) 6.70 6.38 (-0.32)

Table 1. Results of quantitative evaluation with and without ambi-

ent illumination.

1. Effects of ambient light

As mentioned in the paper, we assume that the scenes

are dark. However, we did not show the effects of ambi-

ent light in the paper due to page limitations. In fact, we

tested our method under several ambient light conditions,

including complete darkness (i.e., no illumination), to an-

swer the question that is texture information actually dom-

inant with SL only making a small contribution, or can SL

alone achieve sufficient accuracy?

Specifically, we synthesized a dataset without ambient

illumination for synthetic evaluation and also captured real

data without room light for real-world evaluation. We then

ran the evaluations as described in the main paper. As a

comparative method, we also evaluated NeuS without ambi-

ent illumination, i.e., with completely black images, where

the mask supervision was the only clue.

The results are shown in Figure 1 and Table 1. As

expected, our method maintained almost the same accu-

racy across all ambient conditions, whereas NeuS’s accu-

racy drastically decreased as it got darker. Surprisingly, the

accuracy of the proposed method on real data was a little

improved without ambient light compared to with ambient

light. We believe this is because the projected pattern was

observed with higher contrast. These results encourage us

to utilize the proposed system in extreme environments like

undersea, where ambient illumination is missing as sunlight

is heavily attenuated.

2. Limitation on few-shot case

Through our experiments, we observed that when the

number of viewpoints is extremely limited, such as with

only five views, USSL tends to fail in accurately recon-

structing shapes, whereas ActiveNeuS remains relatively

stable, as illustrated in Figure 2. We assume this is due

to the number of unknowns exceeding the constraints in

such few-shot scenarios. Let N represent the number of

3D points in the scene and I represent the number of view-

points. In a conventional structured light (SL) context, the

unknowns are N correspondences along the epipolar lines,

and the constraints are IN . Thus, a single image is suffi-

cient for reconstruction if the projected pattern successfully

reduces ambiguity in correspondence search. However, if

information about the projected pattern is absent, the un-

knowns increase to (3 + 1)N (the RGB values of the pro-

jected pattern), while the constraints remain the same, re-

quiring at least four viewpoints. We assume the number of

required viewpoints increases in the Neural SDF context, as

we model reflection using a MLP.

To address this issue, we experimented with a weakly-

supervised SL (WSSL) approach, where information about

the projected pattern is implicitly utilized by concatenating

the RGB values of the projected pattern with the pattern

feature vector. As shown in Figure 2 (right), WSSL signifi-

cantly improves qualitative reconstruction accuracy in few-

shot scenarios, as anticipated. Although we proposed USSL

(completely without pattern information) for theoretical in-

terest, WSSL may be advantageous in few-shot scenes in

practice.

3. Convergence speed

Given that USSL is expected to converge faster than

NeuS, we compared their convergence speeds on the

NeRF-Synthetic (Lego) dataset using the Hamming pattern.

Specifically, we evaluated the reconstructed meshes at var-

ious stages up to 150k training steps out of the total 300k

steps (Figure 4). Qualitatively, there is little noticeable dif-

ference between NeuS and USSL in terms of convergence
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Figure 1. Results of qualitative evaluation with and without ambient illumination.

ActiveNeuS (CD: 7.87)NeuS (CD: 9.02) USSL (CD: 9.64) WSSL (CD: 7.96)

Figure 2. Evaluation of WSSL compared to NeuS, ActiveNeuS,

and USSL.

speed per training step. However, USSL requires signifi-

cantly more computation, resulting in approximately three

times slower training in wall clock time. Note that, both

USSL and NeuS use hashgrid encoding for their SDF MLP,

thus, NeuS is almost identical to Neuralangelo without cur-

vature loss.

Despite this, quantitative metrics reveal a consistent ad-

vantage of USSL over NeuS, particularly evident shortly

after the training begins, as shown in Figure 3. These re-

sults suggest that while USSL demonstrates superior con-

vergence speed, but improving its computational efficiency

remains a critical challenge.

Additionally, it should be noted that running an experi-

ment without shadow ray pruning was not feasible due to

VRAM limitations.
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Figure 3. Quantitative difference in convergence speed between

NeuS and USSL in NeRF-Synthetic (Lego).

4. Scene texture recovery

Scene texture recovery is another critical task related to

SL, as users typically seek the original scene texture with-

out the interference of pattern projection. In the proposed

pipeline, the outputs from the color MLP and reflection

MLP are blended with learnable parameters during train-

ing to explicitly account for external illumination beyond

the original ambient lighting. Consequently, it may be pos-

sible to recover the scene texture by disabling the blending

mechanism and using only the output from the color MLP

to render the image.
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Figure 4. Qualitative difference in convergence speed between NeuS and USSL in NeRF-Synthetic (Lego). Right bottom numbers are

elapsed time from the training start.

We evaluated scene texture recovery by following this

approach, rendering images in two modes: “with pattern”

and “pattern removal.” The “with pattern” mode is a stan-

dard rendering process without any modifications to the

proposed pipeline, where the outputs are expected to closely

match the training images. In contrast, the “pattern re-

moval” mode renders images without the blending mech-

anism, aiming to recover the original scene texture.

Figure 5 shows the qualitative results, while Table 2

presents the quantitative results in terms of PSNR compared

to the GT. From these results, it is evident that the images

rendered in “with pattern” mode are highly accurate. For

the “pattern removal” mode, the quality varies depending

on the scene. The chair, mic, and block scenes produce im-

ages very close to the GT, while the lego and mannequin

body scenes appear flat, lacking ambient illumination shad-

ing. In the dog and mannequin head scenes, the renderings

are quite noisy, highlighting potential challenges in accu-

rately recovering scene textures from in-the-wild images.

An interesting case is the hotdog scene, where the ren-

dering of the hotdogs is relatively accurate, but the bright-

ness of the dish differs significantly. This discrepancy is

likely due to severe inter-reflection, where all illumination

information on the dish is absorbed by the reflection MLP,

including ambient illumination.

In conclusion, while the proposed pipeline shows great

potential for scene texture recovery, further improvements

are necessary to handle noisy in-the-wild images effec-

tively.

5. Extension of the proposed method

We would like to highlight that the proposed method has

the potential to be extended to various tasks, including self-

calibration of the structured light (SL) system, system pose

refinement, and robust shape reconstruction in the presence

of environmental disturbances, among others. While this

paper focuses on learning the projected pattern, a similar

approach could be applied to estimate parameters such as

the camera-to-projector pose, affine distortion of the pro-

jector screen, and projector color temperature, by defining

these factors as learnable parameters.

Furthermore, it is important to note that the proposed

method may demonstrate robustness against various types

of noise and could be applicable to in-the-wild images, un-

like conventional SL techniques that typically require pre-

cise capture configurations. This is analogous to how meth-

ods like NeRF or Neural SDF are known for their noise re-

silience.

6. A big-picture of this line of work

Some may wonder if really there are situations where

only the projected pattern is unknown, while the relative

transformation between the camera and the projector, and

the system’s transformation, are all known. We consider

this possible in scenarios where the camera configuration

is incorrect and there are significant color space changes

or defocus blur, when a special projection device (such as

a diffractive optical element) does not project a pattern as

intended, or when a light source unintentionally projects a

certain pattern due to a crack or similar issue. Usually, we

can simply reconfigure, remake, or replace the devices, but



Pattern Mode
NeRF-Synthetic (40 views) Real dataset (36 views)

Lego Chair Hotdog Mic Dog Block Head Body

Random dot
w pattern 36.22 33.02 36.97 35.00 34.71 40.55 43.26 -

pattern removal 34.42 33.43 27.40 34.04 29.84 28.24 29.64 -

Hamming
w pattern 28.23 27.69 30.54 32.88 31.70 38.08 40.51 -

pattern removal 29.63 30.17 25.98 32.21 27.73 29.37 30.06 -

Cross-lasers
w pattern 37.99 36.42 37.61 35.79 - - - 29.84

pattern removal 27.49 36.61 21.85 34.63 - - - 22.14

Table 2. Results of quantitative evaluation of scene texture recovery.
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Figure 5. Example images of scene texture recovery.

this might not be possible in certain situations, such as with

unmanned underwater vehicles (UUV) in the deep sea.

Furthermore, we are not solely focused on unknown pat-

terns; we are also interested in refining the projector pose,

intrinsic parameters, and system pose, and this paper ad-

dresses one aspect of this broader picture. Ultimately, we

aim to develop a fully calibration-free SL system for simul-

taneous localization and mapping (SLAM) in extreme envi-

ronments.
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