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1. Comparison with Poisson Image Editing
While our primary comparative evaluations focused ex-

clusively on deep learning-based methods, we herein ex-
tend our experimental analysis to include Poisson Image
Editing (PIE) [1], a representative classical image manip-
ulation technique. PIE is fundamentally a gradient-domain
image synthesis method that synthesizes images by solv-
ing the Poisson Equation defined through Laplacian opera-
tors, thereby reconstructing image regions through gradient
optimization. Specifically, we adopted the Fourier-domain
approach of PIE, employing a vector field v derived from
the Laplacian with the maximum absolute value between
source and target images — a strategy referred to as the
”Maximum” approach in [1]. This methodological selec-
tion was predicated on its potential to generate visually har-
monious composites across diverse images.

Qualitative assessment revealed the significant limita-
tions of PIE when compared to our proposed method. While
PIE struggles to maintain color consistency and preserve
source image geometry, our approach demonstrates supe-
rior image synthesis capabilities (Fig. 1). In particular, a
careful examination of the first and third rows in Fig. 1 re-
veals the critical deficiency of PIE in preserving source ge-
ometry, with notable instances of complete occlusion or un-
intended elimination of complex structural elements such
as cracks and apertures. These observations can be inter-
preted as revealing the fundamental limitations inherent in
synthesizing textural information and geometry within the
Laplacian domain, which fundamentally constrains the ca-
pability of gradient-based image editing techniques to pre-
serve comprehensive image characteristics.

We extended the comparative assessment framework
employed in Table 2 of the main manuscript to evaluate PIE
using identical metrics (Table 1). The quantitative analysis
revealed a nuanced performance profile: while PIE demon-
strated exceptional similarity with background regions, it
exhibited critically compromised performance in preserv-
ing source foreground geometric characteristics. Specifi-
cally, metrics assessing foreground region similarity uni-
formly indicated near-minimal performance, suggesting a
fundamental limitation in PIE’s ability to maintain the ge-

Figure 1. Additional qualitative comparison with PIE. The meth-
ods to be compared are set to maximize the quality of the generated
images, and the highest quality results are selected and included.
The same images as Figure 3 in the main manuscript are used ex-
cept for PIE.

ometry of source image features during image synthesis.

2. Details of User Study
In the user study, we showed all inputs-outputs pairs to

every participant and asked him/her to score each output
as described in Sec.4.4 of the main manuscript. Here, to
get fair answers, all participants completed the question-
naire without knowing which image corresponded to which
method.
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Table 1. Quantitative evaluation results for geometry composition in a given target background image. Arrows next to each score indicate
score interpretation: ↓ lower is better, ↑ higher is better. The minimum value for LPIPS and DISTS is 0, and the maximum value for CLIP
is 100. A total of 150 images were used for the evaluation.

Method LPIPS(bg) ↓ LPIPS(fg) ↓ CLIP(bg) ↑ CLIP(fg) ↑ DISTS(bg) ↓ DISTS(fg) ↓
Poisson Image Editing [1] 0.037 0.415 86.909 72.168 0.118 0.279

Paint By Example [2] 0.424 0.273 70.694 84.348 0.256 0.241
TF-ICON [3] 0.434 0.392 69.470 81.422 0.309 0.315

PHDiffusion [4] 0.408 0.255 73.624 84.879 0.276 0.196
TF-GPH [5] 0.324 0.252 71.234 86.936 0.223 0.237

Ours 0.266 0.255 68.180 91.352 0.179 0.250
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