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1. Additional statistical analysis of pairwise
distances between features

Empirical validation Since our statistical analysis is lim-
ited to isotropic Gaussian distributions, it is not directly ap-
plicable other distributions or real-world data. Therefore,
we aim to bridge this theoretical gap with empirical analy-
sis using real-world data. We validate these findings on both
synthetic data with isotropic Gaussian distributions and real
data from the bottle set in MVTec AD [1], utilizing normal
images from the training set and anomaly images from the
test set, as the training set does not contain any anomalies.

For the synthetic experiment, we sampled 1000
16-dimensional features from the normal distribution
N (0, I) and 1000 samples from the anomaly distribution
N (1.5, 2I). We then computed all pairwise feature dis-
tances, resulting in the histogram shown in Fig. 1a. For
the real experiment, we extracted both image-level features
and patch-level features from all 209 normal (training) im-
ages and 63 anomaly (test) images of the bottle sequence
in MVTec AD using the pretrained DINO model from [2].
Again, we calculated all pairwise feature distances over all
pairs of patch-level features and over all pairs of image-level
features, yielding histograms in Figs. 1b and 1c. While the
histograms have different degrees of skewness, we observe
the normal pairs are consistently the most likely to yield
shorter pairwise distances compared to other types of pairs.

2. Toy example of semantic anomaly detection

We used CIFAR-10 [7] to conduct a toy experiment, set-
ting the data to a scenario where the distribution of outliers
is more spread out than the distribution of normals, con-
sistent with our assumptions. The normal class is “auto-
mobile”, and the outliers consist of the remaining classes
in CIFAR-10. The contamination ratio (the ratio of out-
liers to normals) within the training dataset is set to 10%.
Unlike detecting patch-level defects, Local-Net in seman-
tic anomaly detection outputs one anomaly score per image
(because semantic anomalies are not divided into normal
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and abnormal regions within a single image). For further
details, please refer to Sec. 4 for related results.

3. Additional framework details
Overall architecture FUN-AD comprises two sub-
networks: a pretrained feature extractor E (to leverage se-
mantic information, the self-supervised DINO [2]) based
on vision transformer (ViT) [4] and the Local-Net model
ϕ based on a simple multilayer perceptron (MLP) for de-
tecting patch-level anomalies. E takes an image Ii as input
and outputs one class token and P patch tokens. To iden-
tify anomalies at the patch level, we concatenate the class
token with each patch token to form a patch-level feature
fij ∈ RD for each image patch Xij . With abuse of nota-
tion, we represent Ii = {Xij}Pj=1, where P = HW/K2.
In our setting, H = W = 224, K = 8, and thus P = 784.
Since the class token is 768-dimensional and the patch to-
ken is 768-dimensional, D = 1536. The local patch feature
fij serves as input to the Local-Net ϕ, from which we obtain
a normalized anomaly score using a sigmoid function.

Model inference In the inference phase, FUN-AD per-
forms anomaly detection and anomaly localization by pre-
dicting the anomaly score for a given input. For anomaly
detection, a test image Xi is passed through E to extract
the patch-level features {fij}Pj=1. These features are passed
through ϕ to obtain the patch-level anomaly scores. We then
perform global max-pooling of these scores to calculate the
image-level global anomaly score. For anomaly localiza-
tion, the patch-level anomaly scores are spatially arranged
to form an anomaly score map, as shown in Fig. 5 in [6]. As
in [8,15], we then perform bilinear interpolation of the map
with Gaussian smoothing (σ = 4) to match the dimensions
of the original image (H ×W ).

Implementation details The Local-Net has the FC[1536,
1024, 128, 1] structure. Leaky ReLU activation functions
(slope: 0.2) are applied between layers, and the output
layer uses the sigmoid function for outputting normalized
anomaly score. We use the RMSProp optimizer with mo-
mentum of 0.2 and learning rate of 2e-5 for training using
the batch size of 32. We set λ = 2.5, τb = 0.5, τn = 0.5
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Figure 1. Histogram of pairwise distances for different types of feature pairs. Abbreviations are as follows: NN for normal-normal pairs,
AA for anomaly-anomaly pairs, AN or NA for anomaly-normal or normal-anomaly pairs. For the synthetic experiment, the normal samples
were drawn from N (0, I) and the anomaly samples from N (1.5, 2I). For the “real” comparison, we used patch features (patch tokens)
and image features (class tokens) extracted from the pretrained DINO model [2] for the bottle set [1].

Dataset Method
Anomaly-to-normal ratio

0% 1% 3% 5% 10% 20%

MTD [5]

InReach [9] 83.55 / 72.02 84.08 / 75.49 80.30 / 78.79 80.93 / 78.64 80.73 / 72.23 88.42 / 81.91
SoftPatch [15] 76.11 / 90.63 77.19 / 91.53 79.61 / 92.67 80.51 / 91.48 83.61 / 87.52 85.26 / 93.49

FUN-AD 79.55 / 94.75 82.51 / 94.58 85.87 / 94.97 85.35 / 93.84 85.12 / 93.52 94.74 / 95.37
FUN-AD* 83.61 / 93.51 85.25 / 93.59 87.52 / 95.22 85.46 / 94.13 85.28 / 93.59 95.79 / 97.76

Table 1. Performance comparison of different fully-unsupervised anomaly detection methods across different anomaly-to-normal ratios on
the contaminated MTD dataset (no overlap). * indicates synthetic anomaly data has been utilized for training. The best results are in bold
and the runner-ups are underlined.

and τc = 0.9 by default. For each object/texture class, we
train for 1500 epochs and choose the model with the best
average of image-wise and pixel-wise AUROCs. In Sec. 3
of the main paper [6], the real data consists of normal data in
the training set and anomalous data in the test set. Also, we
set the patch size to 8, yielding one 768-dimensional image-
level feature and 282 768-dimensional patch-level features
for each normal or anomaly image.

4. Additional ablation studies
Effect of different contamination rates Tab. 1 demon-
strates the performance of FUN-AD according to the con-
tamination ratio in the training dataset. Here, “FUN-AD”
refers to the results obtained from training with the dataset
without synthetic anomalies, while “FUN-AD*” refers to
the results from training the FUN-AD framework with
synthetic anomalies added at a rate of 5% of the train-
ing dataset size. Synthetic anomalies were created from
a noisy (anomaly-present) dataset considering a fully un-
supervised setting. The results demonstrate that our pro-
posed framework achieves state-of-the-art performance on
texture-based dataset, highlighting its robustness across var-
ious types of anomalies.

Inference time In an industrial setting, real-time anomaly
detection is crucial. When comparing the inference speed
with existing methods using the GPU RTX-4090 (refer to
Tab. 2), our method operates at an impressive speed of ap-
proximately 113 fps, outperforming other methods.

Effect of weight on mutual smoothness loss Tab. 3
shows that optimal performance is achieved when λ = 2.5

on MVTec AD. In these results, λ = 0 indicates that the
pseudo-labeling method alone is sufficient for the network
to learn from the normal and anomaly information and suc-
ceed in anomaly detection and localization. Additionally,
when mutual-smoothness loss is applied, the anomaly de-
tection performance improves with a weight value of λ =
2.5 compared to using only pseudo-labeling.

Effects of random sampling rate Since Eq.7 needs to be
calculated for pseudo-labeling, the training time overhead
can be significant if computed with all feature vectors in
the memory bank. However, applying corset sampling [12],
which has been used in a one-class classification environ-
ment, is difficult because we cannot assume that all the sam-
ples in the memory bank are normal. Therefore, we com-
pare the performance by randomly sampling only a small
percentage of the feature vectors in the memory bank. Ta-
ble 4 shows the performance of anomaly detection and lo-
calization according to the sampling ratio. The performance
does not vary significantly depending on the degree of sam-
pling. This indicates that using a low sampling rate for ef-
ficient training does not result in significant performance
degradation.

Effects of synthetic supervised loss The comparison
with and without ysyn in Tab. 5 shows that our proposed
pseudo labels perform better than those using Perlin masks
to assign labels for synthetic anomalies. This indicates that
our pseudo-labeling method is more effective for detecting
real anomalies by identifying semantically anomalous re-
gions and using them for training, rather than merely learn-
ing that regions with the Perlin noise are anomalous.



Method FUN-AD (Ours) SoftPatch [15] InReaCh [9]
Throughput (fps) 112.7 22.5 8.8

Table 2. Inference speeds achieved by different fully unsupervised
anomaly detection algorithms on the VisA dataset.

λ AUROCimage(%) AUROCpixel(%)

0 98.72 98.39
0.25 98.54 98.41

1 98.83 98.45
2.5 98.95 98.55
10 98.55 98.34

Table 3. Ablation study of weights for the mutual smoothness loss.
The optimal performance is achieved when λ = 2.5 on MVTec AD.

Sampling ratio AUROCimage(%) AUROCpixel(%)

0.25 98.83 98.66
0.5 98.95 98.55

0.75 99.11 98.51
1.0 98.84 98.53

Table 4. Ablation study of the sampling rate when storing nor-
mally labeled feature vectors in memory banks. This demonstrates
the capability of efficient training with a low sampling rate.

Method AUROCimage(%) AUROCpixel(%)

w/o ysyn 97.83 97.51
w ysyn 98.95 98.55

Table 5. Ablation study of synthetic supervised loss. ysyn indicates
whether the mask of the synthetic anomaly is used or not.

Semantic anomaly detection Detecting semantic anoma-
lies also requires a fully unsupervised setting, and according
to [14], it is more similar to the real world when the train-
ing data is contaminated with abnormal samples. Therefore,
we conducted experiments on the STR-10 [13] and CIFAR-
10 [7] datasets to verify the applicability of our framework.
We designated one class as the normal class and randomly
sampled anomalies from the remaining classes to create
contaminated unlabeled datasets with a 1:10 anomaly-to-
normal ratio. The findings are presented in Tab. 6, demon-
strating that although FUN-AD was originally developed
for industrial anomaly detection, it effectively distinguishes
between normal and abnormal classes under specific con-
ditions. In these experiments, where the normal class is
singular and the abnormal classes encompass the remain-
ing nine, the variation is substantial enough to validate the
effectiveness of our assumptions and approach.

5. Qualitative results

Fig. 2 shows some anomaly localization results yielded
by FUN-AD. Each class is represented by three columns:
the first column shows the RGB image, the second column

Dataset AUROC (%)

CIFAR-10 [7] 95.10
STL-10 [13] 99.63

Table 6. Average semantic anomaly detection results for scenarios
(10, e.g., cat is normal) where each semantic class is normal.

(a) MVTec AD

(b) VisA

Figure 2. Visualization of anomaly detection results achieved by
FUN-AD on the MVTec AD and VisA datasets. Each binary mask
shows the anomaly segmentation map while each heatmap visual-
izes the anomaly region (red means likely to be an anomaly while
blue means unlikely).

shows the segmentation mask of the defect area, and the
third column shows the anomaly score predicted by FUN-
AD. Our method is not only effective at detecting large de-
fects but also excels at clearly separating the boundary be-
tween normal and anomaly without ambiguity, even in the
presence of very small defects. This is evident when com-
paring the ground-truth mask and the heatmap in Fig. 2.
These results demonstrate that FUN-AD is robust, partic-
ularly for very small defects, but not limited to large detects
with higher confidence score compared to other models.

6. Details of the experimental results

We show the experimental results for all categories
of overlap, No overlap for MVTec AD and VisA in
Tab. 7, 8, 9, 10. Each table presents image-wise AUROC
(%) / pixel-wise AUROC (%), representing anomaly detec-
tion and localization performance, respectively. The best
results are in bold and the runner-ups are underlined. FUN-



AD places a stronger emphasis on local anomalies by utiliz-
ing Local-Net for inference. Consequently, it excels at de-
tecting small defects in images with multiple instances, as
observed in capsules and macaroni2 in VisA, outperforming
other models in this regard.

7. Limitations and broader impacts
Limitations While FUN-AD is shown to work across
many different unsupervised settings, it may be compro-
mised if the feature diversity of the normal data is compara-
ble to that of the anomalies, e.g. when one type of anomaly
dominates. Also, our analytic analysis in Sec.3.1 is lim-
ited to the case of normal and anomaly distributions follow-
ing isotropic Gaussians. Our approach still requires use of
a pretrained feature extraction network such as DINO [2]
for basic initialization. Finally, FUN-AD yields suboptimal
performance for scarce anomaly-to-normal ratios (0 to 1%).

Broader impacts Our approach can reduce the physical
burden of human workers by reducing the manual labor re-
quired for annotating normal samples. This allows reducing
expenditure on data acquisition which in return may be in-
vested towards improving the quality of product.



Type One-class classification Fully unsupervised

Method CS-Flow [11] PaDiM [3] PatchCore [10] SimpleNet [8] RealNet [16] SoftPatch [15] InReaCh [9] FUN-AD (Ours)

Bottle 98.7 / - 99.3 / 98.4 100.0 / 98.2 100.0 / 97.2 100.0 / 98.2 100.0 / 98.7 100.0 / 98.3 100.0 / 99.2
Cable 95.5 / - 89.3 / 93.6 96.9 / 80.9 97.0 / 93.7 96.1 / 95.6 99.1 / 98.7 94.2 / 97.5 98.7 / 94.0

Capsule 95.0 / - 90.5 / 98.5 97.2 / 98.7 95.3 / 98.1 99.8 / 98.6 95.8 / 98.9 49.7 / 93.4 99.7 / 98.2
Carpet 99.8 / - 100.0 / 99.2 98.7 / 99.1 99.4 / 98.8 98.6 / 97.7 99.1 / 99.4 98.4 / 99.5 100.0 / 99.7
Grid 96.5 / - 93.4 / 95.6 96.2 / 98.9 99.1 / 97.9 100.0 / 99.6 96.3 / 98.7 91.2 / 97.7 100.0 / 99.4

Hazelnut 95.1 / - 92.7 / 98.0 100.0 / 98.8 97.6 / 95.6 99.9 / 98.5 100.0 / 98.8 98.3 / 97.8 100.0 / 99.7
Leather 98.6 / - 100.0 / 99.3 100.0 / 99.2 100.0 / 98.9 100.0 / 99.7 100.0 / 99.4 100.0 / 99.3 100.0 / 99.8

Metal nut 91.8 / - 97.7 / 89.3 99.1 / 77.6 99.0 / 85.8 100.0 / 87.0 100.0 / 86.8 96.8 / 95.1 100.0 / 99.5
Pill 89.3 / - 93.7 / 96.2 97.0 / 97.0 95.6 / 97.9 99.1 / 98.9 96.7 / 97.8 88.6 / 96.0 98.5 / 98.2

Screw 79.3 / - 84.5 / 98.4 95.0 / 98.6 89.0 / 97.8 98.8 / 99.4 94.5 / 99.4 79.7 / 98.3 94.8 / 98.1
Tile 96.2 / - 97.8 / 94.9 99.2 / 92.8 99.4 / 91.6 99.7 / 97.8 98.7 / 96.3 99.0 / 97.3 99.5 / 98.7

Toothbrush 92.7 / - 100.0 / 98.8 99.7 / 98.8 100.0 / 98.4 98.3 / 95.0 99.7 / 98.6 99.0 / 98.8 97.9 / 98.7
Transistor 92.3 / - 94.6 / 96.8 96.8 / 87.7 96.0 / 89.7 98.0 / 90.9 99.6 / 93.6 99.2 / 97.1 99.3 / 97.7

Wood 90.5 / - 98.1 / 94.3 96.6 / 95.6 99.7 / 92.9 99.9 / 97.3 98.1 / 95.1 95.3 / 92.3 100.0 / 98.0
Zipper 95.1 / - 88.2 / 98.4 98.7 / 98.1 98.7 / 95.2 99.6 / 98.9 97.5 / 98.9 93.2 / 94.9 100.0 / 99.3

Average 93.8 / - 94.7 / 96.6 98.1 / 94.7 97.7 / 95.3 99.2 / 96.9 98.3 / 97.3 92.2 / 96.9 99.2 / 98.6

Table 7. Detailed results for MVTec AD in the No overlap setting.

Type One-class classification Fully unsupervised

Method CS-Flow [11] PaDiM [3] PatchCore [10] SimpleNet [8] RealNet [16] SoftPatch [15] InReaCh [9] FUN-AD (Ours)

Bottle 67.4 / - 79.9 / 96.0 89.4 / 68.2 76.2 / 46.3 99.3 / 97.7 100.0 / 93.1 100.0 / 98.4 100.0 / 99.2
Cable 72.7 / - 68.0 / 86.0 87.1 / 65.0 41.2 / 51.7 88.3 / 93.5 99.3 / 98.4 94.6 / 97.8 96.9 / 95.4

Capsule 77.7 / - 81.4 / 98.3 88.8 / 92.3 43.0 / 61.0 97.8 / 99.2 95.3 / 98.7 52.1 / 94.3 97.5 / 98.1
Carpet 68.4 / - 89.0 / 97.1 75.4 / 64.6 67.6 / 71.1 98.9 / 98.2 99.7 / 98.5 98.7 / 99.4 100.0 / 99.7
Grid 52.5 / - 52.0 / 85.7 61.3 / 60.3 57.6 / 45.4 100.0 / 99.1 97.1 / 97.6 92.4 / 97.6 99.8 / 99.2

Hazelnut 42.1 / - 43.2 / 95.8 67.0 / 59.7 69.4 / 64.1 99.6 / 98.5 100.0 / 95.4 98.7 / 97.6 100.0 / 99.7
Leather 72.9 / - 94.7 / 97.2 81.0 / 66.9 45.8 / 31.5 100.0 / 99.4 100.0/ 99.3 100.0 / 99.0 100.0 / 99.8

Metal nut 70.1 / - 74.6 / 79.9 90.2 / 62.7 60.9 / 60.7 97.2 / 86.3 99.7 / 77.0 97.2 / 98.4 99.8 / 99.4
Pill 72.8 / - 76.5 / 95.9 84.5 / 90.8 49.1 / 55.6 96.5 / 98.5 94.6 / 97.3 89.1 / 96.1 98.1 / 98.5

Screw 58.0 / - 62.5 / 96.7 78.0 / 77.2 53.6 / 61.9 91.2 / 98.9 93.5 / 94.5 79.9 / 98.3 93.4 / 98.4
Tile 69.8 / - 71.0 / 72.6 86.8 / 63.3 66.9 / 33.0 98.6 / 94.2 99.4 / 94.0 99.1 / 97.7 99.0 / 98.8

Toothbrush 83.9 / - 80.0 / 95.3 95.3 / 91.1 50.6 / 34.9 99.2 / 94.1 99.7 / 98.8 98.3 / 98.8 98.6 / 98.8
Transistor 43.8 / - 45.8 / 90.8 72.1 / 61.4 61.5 / 48.3 88.5 / 87.6 99.1 / 90.4 99.0 / 95.2 98.7 / 97.7

Wood 54.3 / - 66.8 / 90.2 76.0 / 62.0 79.2 / 64.6 97.6 / 96.1 98.9 / 95.2 95.2 / 91.8 100.0 / 98.0
Zipper 75.9 / - 77.3 / 96.9 90.7 / 76.4 66.9 / 63.4 99.7 / 98.5 97.6 / 98.7 91.6 / 94.4 99.9 / 99.2

Average 65.5 / - 70.8 / 91.6 81.6 / 70.8 59.3 / 52.9 96.8 / 96.0 98.3 / 95.1 92.4 / 97.2 98.8 / 98.6

Table 8. Detailed results for MVTec AD in the Overlap setting.



Type One-class classification Fully unsupervised

Method CS-Flow [11] PaDiM [3] PatchCore [10] SimpleNet [8] RealNet [16] SoftPatch [15] InReaCh [9] FUN-AD (Ours)

Candle 86.7 / - 91.2 / 99.4 95.0 / 99.2 93.9 / 97.9 94.7 / 99.6 93.8 / 99.6 90.1 / 98.7 94.4 / 99.5
Capsules 68.2 / - 56.6 / 94.0 69.5 / 96.2 76.5 / 96.8 82.5 / 98.9 69.2 / 97.7 57.9 / 93.0 93.8 / 99.5
Cashew 86.1 / - 90.0 / 99.0 94.7 / 99.0 90.7 / 99.5 84.3 / 98.2 95.2 / 99.1 77.1 / 98.2 96.6 / 99.7

Chewinggum 93.8 / - 95.2 / 98.9 98.4 / 98.5 96.0 / 97.5 99.8 / 99.9 98.7 / 99.1 77.8 / 98.2 99.3 / 99.7
Fryum 78.0 / - 89.1 / 97.7 89.4 / 91.2 91.5 / 94.8 89.1 / 94.5 92.0 / 96.0 86.3 / 96.4 96.9 / 98.2

Macaroni1 81.4 / - 83.2 / 99.1 86.5 / 97.3 88.7 / 98.1 98.1 / 99.9 89.8 / 98.8 83.7 / 98.0 96.4 / 99.9
Macaroni2 60.6 / - 60.4 / 95.6 64.8 / 89.3 72.1 / 94.6 90.0 / 99.6 57.6 / 95.1 57.4 / 95.8 87.0 / 99.1

PCB1 90.7 / - 94.2 / 99.6 93.0 / 86.5 93.0 / 94.8 93.8 / 99.4 95.1 / 99.8 93.8 / 99.6 96.2 / 99.6
PCB2 85.8 / - 91.8 / 99.2 96.3 / 98.8 94.8 / 99.0 95.5 / 96.9 93.9 / 99.3 91.9 / 98.7 91.2 / 97.8
PCB3 84.3 / - 85.7 / 99.1 93.8 / 96.9 95.2 / 99.2 95.9 / 99.1 92.3 / 99.4 93.3 / 99.3 91.4 / 98.6
PCB4 95.3 / - 97.1 / 98.2 98.0 / 96.3 97.8 / 96.1 98.9 / 98.9 99.2 / 99.1 99.7 / 99.5 97.6 / 99.5

Pipe fryum 77.3 / - 95.2 / 98.3 98.5 / 99.2 94.6 / 99.7 98.8 / 99.3 98.8 / 99.5 96.7 / 99.8 99.3 / 99.8
Average 82.3 / - 85.8 / 98.3 89.8 / 95.7 90.4 / 96.7 93.5 / 98.7 89.6 / 98.5 83.8 / 97.6 95.0 / 99.2

Table 9. Detailed results for VisA in the No overlap setting.

Type One-class classification Fully unsupervised

Method CS-Flow [11] PaDiM [3] PatchCore [10] SimpleNet [8] RealNet [16] SoftPatch [15] InReaCh [9] FUN-AD (Ours)

Candle 68.1 / - 79.7 / 99.1 85.3 / 87.5 47.6 / 49.0 95.3 / 99.4 93.7 / 99.4 85.2 / 95.5 93.8 / 99.4
Capsules 48.6 / - 45.3 / 78.9 65.2 / 83.9 50.3 / 50.2 82.6 / 96.8 70.5 / 89.2 53.1 / 89.0 93.3 / 99.4
Cashew 64.4 / - 72.0 / 85.2 86.8 / 85.7 61.4 / 60.8 88.9 / 96.6 94.1 / 98.9 75.5 / 91.0 96.9 / 99.7

Chewinggum 57.8 / - 76.2 / 82.1 87.9 / 78.1 51.9 / 59.9 99.9 / 99.4 97.9 / 98.9 76.1 / 90.4 99.2 / 99.7
Fryum 73.1 / - 71.3 / 92.9 84.3 / 82.5 51.9 / 80.0 86.1 / 94.8 92.9 / 92.4 78.1 / 94.7 96.5 / 98.2

Macaroni1 65.1 / - 68.8 / 97.5 80.2 / 84.0 45.7 / 49.3 98.1 / 99.8 89.0 / 97.2 75.5 / 88.1 96.7 / 99.8
Macaroni2 48.2 / - 48.4 / 89.7 58.2 / 80.4 51.2 / 57.0 88.8 / 99.2 56.5 / 85.9 51.0 / 91.4 87.7 / 99.2

PCB1 72.5 / - 77.4 / 98.0 87.3 / 71.4 44.7 / 60.8 93.2 / 98.9 95.9 / 99.6 94.4 / 97.2 96.7 / 99.6
PCB2 68.7 / - 74.1 / 96.4 86.3 / 83.5 43.9 / 46.8 91.0 / 96.5 93.0 / 98.0 86.7 / 94.1 91.5 / 98.0
PCB3 67.5 / - 69.6 / 97.0 85.6 / 76.6 53.7 / 65.8 90.0 / 96.3 92.4 / 98.7 83.1 / 97.3 91.7 / 98.2
PCB4 76.3 / - 82.1 / 95.7 93.9 / 83.0 46.9 / 68.0 97.0 / 96.6 99.2 / 97.9 99.0 / 96.7 97.8 / 99.5

Pipe fryum 61.8 / - 76.2 / 95.7 87.1 / 82.6 56.2 / 47.2 98.1 / 97.7 98.4 / 99.4 84.4 / 97.5 99.4 / 99.8
Average 64.3 / - 70.1 / 92.3 82.3 / 81.6 50.4 / 57.9 92.4 / 97.7 89.5 / 96.3 78.5 / 93.6 95.1 / 99.2

Table 10. Detailed results for VisA in the Overlap setting.
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