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1. Introduction
We report the training loss (Sec. 2), additional details

of the training (Sec. 3), ablation study (Sec. 4), compari-
son between ETOP and DOL (Sec. 5), further discussion on
the results (Sec. 6), analysis of TDQI (Sec. 7), comparison
of model size and computational cost (Sec. 8), additional
qualitative results (Sec. 9), and limitations (Sec. 10) in the
supplementary material.

2. Training Loss
Decoupled PROB is trained with the following loss func-

tion:

L = Lbb + Lcls + Lobj (1)

where Lbb denotes the L1 and gIoU losses for bounding
box learning, Lcls represents the sigmoid focal loss for class
classification, and Lobj is the objectness loss(explained in
main paper). All these settings are identical to those used in
PROB [8].

3. Additional Training Details
We report additional training details for Decoupled

PROB that are not included in the main paper. Tab. 1 lists
the number of training epochs and the epochs at which the
learning rate drops for each task in M-OWODB and S-
OWODB. “ - ” in the learning rate drop column indicates
that no special settings are applied. All other hyperparam-
eters are the same as those used in PROB [8]. We use two
Nvidia RTX A6000 GPUs for training, setting the batch size
to 6 for each GPU.

4. Ablation Study
Tab. 2 shows the ablation study for Decoupled PROB. In

Decoupled PROB-TDQI∗1, we replace Task-Decoupled

Query Initialization (TDQI) in Decoupled PROB with a
simple class score-based query selection [6, 7]. In Decou-
pled PROB-TDQI∗2, all object queries use only learnable
parameters instead of TDQI. In Decoupled PROB-ETOP,
we remove Early Termination of Objectness Prediction
(ETOP) from Decoupled PROB, performing objectness pre-
diction until the last layer of the decoder and learning with-
out mitigating the conflict between objectness and class pre-
dictions. As shown in Tab. 2, Decoupled PROB-TDQI∗1

exhibits lower performance across all metrics compared to
Decoupled PROB, highlighting the importance of TDQI in
Decoupled PROB. However, it should be noted that, sim-
ilar to our proposed method, the objectness prediction is
stopped at decoder layer 2(ETOP), which is the optimal
setting for TDQI. Exploring the optimal number of layers
for class score-based query selection could potentially im-
prove performance. While Decoupled PROB-TDQI∗2 im-
proves performance for unknown objects, its performance
on known objects significantly decreases compared to De-
coupled PROB. As shown in Table 2 of the main paper,
it can be observed that the higher the number of learn-
able parameters, the better the performance on unknown
objects, and Decoupled PROB-TDQI∗2 follows this trend.
Similar to Decoupled PROB-TDQI∗1, it should be noted
that Decoupled PROB-TDQI∗2 could potentially improve
performance by exploring the optimal number of layers to
stop objectness prediction in ETOP. Regarding Decoupled
PROB-ETOP, while it maintains comparable known object
detection performance to Decoupled PROB, it shows sig-
nificantly lower performance in unknown object detection.
This underscores the crucial role of ETOP in enhancing the
performance of Decoupled PROB.

5. Comparison between ETOP and DOL

Unlike Decoupled Objectness Learning (DOL) [2],
ETOP performs both class and bounding box prediction



Table 1. Details for training hyperparameters.

Training Session Task 1 Task 2 Task 2 ft Task 3 Task 3 ft Task 4 Task 4 ft
Epochs lr drop Epochs lr drop Epochs lr drop Epochs lr drop Epochs lr drop Epochs lr drop Epochs lr drop

M-OWODB 26 15 10 - 15 10 10 - 15 10 10 - 15 10
S-OWODB 26 15 10 - 10 5 10 - 10 5 10 - 10 5

Table 2. Comparison of ablation experiment results for the components of the proposed model. The details of the metrics are provided
in Section 5 of the main paper. In Decoupled PROB-TDQI∗1, we modify TDQI to use a purely class score-based query selection. In
Decoupled PROB-TDQI∗2, we modify TDQI to use only learnable parameters. In Decoupled PROB-ETOP, objectness is predicted and
trained until the last layer of the decoder. The performance comparison also includes Deformable DETR and the Upper Bound, which is
Deformable DETR trained with ground truth for unknown classes, as reported in [1].

Task IDs (→) Task 1 Task 2 Task 3 Task 4

U-Recall mAP (↑) U-Recall mAP (↑) U-Recall mAP (↑) mAP (↑)

(↑)
Current
known (↑)

Previously
known

Current
known Both (↑)

Previously
known

Current
known Both

Previously
known

Current
known Both

Upper Bound 31.6 62.5 40.5 55.8 38.1 46.9 42.6 42.4 29.3 33.9 35.6 23.1 32.5
D-DETR [7] - 60.3 - 54.5 34.4 44.7 - 40.0 17.7 33.3 32.5 20.0 29.4

Decoupled PROB-TDQI∗1 17.9 57.4 17.5 55.1 36.0 45.6 18.8 44.1 25.5 37.9 36.9 21.2 33.0
Decoupled PROB-TDQI∗2 20.9 59.3 18.6 55.6 36.6 46.1 21.0 44.2 24.6 37.7 37.2 21.7 33.3
Decoupled PROB-ETOP 18.8 60.4 15.3 56.4 37.2 46.8 17.9 44.7 25.7 38.4 37.2 22.8 33.6
Final: Decoupled PROB 20.3 59.8 18.4 56.4 36.7 46.6 20.3 44.6 26.1 38.5 37.8 22.1 33.8

concurrently in the decoder layers that predict objectness.
Additionally, ETOP incorporates iterative refinement for
bounding box prediction. The combination of ETOP and
TDQI offers the advantage of enabling iterative refinement
across a greater number of layers through query selection.

Tab. 3 presents the experimental results comparing
ETOP and DOL. TDQI+DOL indicates that ETOP in De-
coupled PROB is replaced with DOL. Additionally, DOL∗1

stops objectness prediction at the first decoder layer, while
DOL∗2 stops it at the second decoder layer. As shown
in the Tab. 3, using ETOP achieves the best performance
across all metrics. In TDQI, bounding box prediction is
also performed during query selection, which allows itera-
tive refinement over more layers based on those coordinates.
This likely explains why ETOP demonstrates superior per-
formance compared to DOL.

Furthermore, these results highlight the advantages of
ETOP’s continuous class and bounding box prediction, sug-
gesting that it is not necessary to have layers dedicated
solely to objectness prediction in Decoupled PROB.

6. Further Discussion on the Results

As shown in Table 4 of the main paper, our model often
underperforms compared to CAT and USD-ASF, particu-
larly in terms of U-Recall, on both the M-OWOD and S-
OWOD benchmarks. This may be influenced by the num-
ber of object queries initialized as learnable queries. As
indicated in Table 2 of the main paper, a higher ratio of
learnable queries tends to improve U-Recall. Both CAT and
USD-ASF initialize all object queries as learnable queries.
In our approach, we use 20 object queries initialized by

query selection and 80 by learnable queries.
Another reason CAT and USD-ASF may show supe-

rior metrics in early-stage tasks could be that the learnable
queries in our proposed model are not fully converged yet.
While our method utilizes both query selection and learn-
able queries, query selection is likely to focus on object
surroundings from the early stages of the decoder, lead-
ing to faster convergence in training compared to learnable
queries. This suggests that hyperparameter settings for our
method might be more complex compared to those using
only learnable queries. Although our proposed model fol-
lows the settings outlined in Tab. 1 of the supplementary
material, USD-ASF and CAT undergo longer training peri-
ods (e.g., USD trains for 41 epochs and CAT for 45 epochs
in task 1). Particularly in early-stage tasks such as task 1 and
task 2, there is a possibility that the learnable query-based
object queries in our model are not fully converged.

Additionally, one of the reasons for CAT’s superior U-
Recall could be that the pseudo-labeling method it uses,
based on selective search, functions exceptionally well.

7. Analysis of Task-Decoupled Query Initial-
ization (TDQI)

In TDQI, the object queries initialized with query se-
lection are responsible for detecting known objects, while
those initialized with learnable query cover missed known
objects and unknown objects. We investigated the detec-
tion ratios of known and unknown classes in each task
of OWODB using TDQI. The results for M-OWODB are
shown in Fig. 1. As in the main paper, 20 object queries are
initialized with query selection, and 80 object queries are



Table 3. Comparison between ETOP and DOL. DOL∗1 and DOL∗2 indicate that the objectness prediction in DOL stops at the first
decoder layer and the second decoder layer, respectively.

Task IDs (→) Task 1 Task 2 Task 3 Task 4

U-Recall mAP (↑) U-Recall mAP (↑) U-Recall mAP (↑) mAP (↑)

(↑)
Current
known (↑)

Previously
known

Current
known Both (↑)

Previously
known

Current
known Both

Previously
known

Current
known Both

TDQI + DOL∗1 19.2 59.1 17.4 53.4 33.9 43.6 19.2 43.0 23.3 36.4 36.5 20.7 32.5
TDQI + DOL∗2 19.8 58.2 17.0 53.4 34.0 43.7 20.0 42.2 23.7 36.0 36.0 20.6 32.1
Decoupled PROB 20.3 59.8 18.4 56.4 36.7 46.6 20.3 44.6 26.1 38.5 37.8 22.1 33.8

Figure 1. Comparison of known class detection and unknown
class detection roles in each task for TDQI.

initialized with learnable query.
Although object queries initialized with query selection

account for only about 20% of the total, they are responsi-
ble for nearly 70% of the detection of known classes. Con-
versely, learnable queries are responsible for nearly 70% of
the detection of unknown objects. This demonstrates that
in TDQI, object queries initialized with query selection pri-
marily handle the detection of known objects, while those
initialized with learnable query cover the missed known ob-
jects and unknown objects.

8. Comparison of Model Size and Computa-
tional Cost.

Tab. 4 presents the number of parameters and the com-
putational cost for each OWOD model. The computational
cost is calculated with an image size of 640 × 640. OW-
DETR [1], CAT [4], PROB [8], and Decoupled PROB,
which are based on the Deformable DETR model [7], have
nearly the same number of parameters and computational
costs.

OrthogonalDet [5], on the other hand, is a recently pro-
posed high-performance OWOD model. This model has a
significantly larger number of parameters and higher com-
putational cost, and in our implementation, it outputs nearly
2000 detections (refer to the supplementary material of [5])
compared to the 100 detections output by models such as

Table 4. Comparison of model size and computational cost.

Methods Params FLOPs

OWOD [3] 33.6M 32.1G
OW-DETR [1] 39.7M 156.3G

CAT [4] 46.1M 164.3G
PROB [8] 39.7M 156.3G

OrthogonalDet [5] 106.0M 1616.7G
Decoupled PROB (Ours) 40.9M 163.4G

PROB and Decoupled PROB. For more details on the per-
formance of OrthogonalDet, please refer to [5].

9. Additional Qualitative Results

Fig. 2 illustrates examples where objects that were la-
beled as unknown classes in previous tasks are provided to
Decoupled PROB in the current task, allowing it to learn
and detect them as known classes. From left to right, the
surfboard, tennis racket, sofa, and apple are detected as
known classes, having transitioned from unknown classes.

Fig. 3 illustrates the qualitative results of Decoupled
PROB. From left to right, it shows the reference points in
the initial layer of the decoder, the reference points in the
last layer of the decoder, and the detection results. The yel-
low reference points correspond to object queries initialized
by query selection, while the green reference points corre-
spond to object queries initialized by learnable query. The
green bounding boxes indicate known classes, and the yel-
low bounding boxes indicate unknown classes.

10. Limitations

As shown in the results of the main paper, OWOD re-
search has been rapidly advancing. While this task shows
promise for applications in fields such as autonomous driv-
ing and robotics, there are still performance improvements
needed, including in our model. These improvements in-
clude reducing false detections of background as unknown
objects, improving the accurate localization of unknown ob-
jects, and preventing the forgetting of known classes.



Figure 2. Learning Unknown Classes as Known Classes (Incremental Learning).

PROB [8], which we used as our baseline, is a remark-
able approach. However, it may have an issue where back-
ground information is included in the query embeddings
used to update the objectness distribution, indicating a need
for future improvements. Developing new representation
methods to distinguish between objects and background
remains an important research challenge. Further studies
are required to enable models to fundamentally understand
what constitutes an object.
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Figure 3. Qualitative results on example images from test set.
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