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A. Visual Corruption Function Details

A.1. Arithmetic Noise

Arithmetic noise modifies the image by performing
arithmetic operations e.g. addition, multiplication, and
negation on all of the color channels. A subcategory of
arithmetic noise is Additive Noise which adds a particu-
lar value coming from a distribution D to every pixel in the
image. Additive noise is implemented in the form of Gaus-
sian Noise and Poisson Noise. Gaussian noise appears un-
der low light conditions [28] and is one of the most common
types of noise in telecommunications and digital image [6].
Poisson noise or shot noise occurs due to the nature of light
behaving as a quantized particle [26].

To define additive noise, we first define the random vari-
able X as Xn ∼ N(µ, σ2) where the probability distribu-

tion N is defined as f(x) = 1
σ
√
2π

e−
(x−µ)2

2σ2 and Xp ∼ P (λ)

where the probability distribution P is defined as f(x) =
λx

x! e
−λ. The transformation function for additive noise can

be generalized as T (r) = r+Y where Y = Xn or Y = Xp

for Gaussian and Poisson noise respectively. The severity
levels are defined by changing the parameter values of the
aforementioned probability distributions.

Another subcategory of arithmetic noise is Multiplica-
tive Noise implemented in the form of Speckle Noise which
can also be generalized as T (r) = r+r·Xn where Xn is the
random variable Xn ∼ N(µ, σ2). Speckle noise is a com-
mon occurrence in medical and radar images [49]. Color
Inversion, a common digital image processing operation,
performs subtraction i.e. T (r) = rmax − r. The deter-
ministic function has a single severity level and can also
be considered as an image attribute transformation function
(Appendix A.3). The reader should note that the value of
T (r) might fall outside the range [rmin, rmax] and requires
clamping.

A.2. Value Assignment Noise

As the name suggests, the value assignment noise has a
probability p of assigning a particular value to a pixel, i.e.
T (r) = k, on all the color channels. This noise is pri-
marily implemented in the form of Impulse Noise which
is typically one of the two types - bipolar impulse noise,
commonly known as Salt and Pepper Noise, and Random
Valued Impulse Noise. Salt and pepper noise takes one of
two values, typically between the maximum intensity value
rmax and the minimum intensity value rmin – each with
an equal probability p of occurrence. Random-valued im-
pulse noise takes a particular value from a range of values,

typically [rmin, rmax], and follows a uniform distribution
for the probabilistic occurrence of the values. A defective
camera sensor might cause impulse noise during capturing
and transmitting the image [6, 48]. Another form of value
assignment can take place in the form of Thresholding i.e.
the pixel will be assigned a binary value based on exceeding
or subceeding a particular threshold value, rthresh. Binary
Thresholding is defined as T (r) = rmax if r > rthresh,
otherwise, T (r) = rmin.

A.3. Image Attribute Transformation

Image attributes e.g., brightness, saturation, contrast,
color properties, etc, are often modified to enhance the vi-
sual quality of the image [21]. To modify the Brightness,
we transform the image from the RGB color model to the
HSV color model and add a positive or negative constant to
the value channel of the HSV image to increase or decrease
the brightness. The function can be defined as T (v) = v+c
where v represents the value of the value channel and c rep-
resents the additive constant. In real-life scenarios, light-
ing effects, luminance adjustment in digital displays, pho-
tographic effects, and other factors can cause an image to
appear brighter or darker. By simulating these effects using
the brightness function, our framework can test the visual
robustness of VQA models under varying lighting and dis-
play conditions.

Saturation refers to the purity of the colors in an im-
age and can be used to enhance the quality of the image
i.e. the image will look visually appealing to a human ob-
server [21]. However, oversaturation might make the image
look artificial to an observer and undersaturation might pro-
duce washed-out effects that can adversely affect the image
quality. Changing the saturation is common in digital image
processing to make the image look aesthetically pleasing
or to reveal seemingly unseen features [13]. Saturation is
changed by transforming the image from RGB to HSV color
model, followed by modifying the saturation channel value
by multiplying and adding constants i.e. T (v) = v · c1 + c2
where c1 and c2 represents the multiplicative and additive
constants respectively which are set based on the severity
of the noise.

Contrast refers to the difference in color intensity val-
ues between different parts of the image i.e. how well the
details of an image are distinguishable [21]. An image hav-
ing a good level of contrast is more appealing to a viewer
as it sets clear boundaries between various color intensities.
On the contrary, low contrast creates difficulty in differen-
tiating the details and hence, producing washed-out effects.
Contrast enhancement is a common image-processing tech-
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Figure A.1. Comprehensive taxonomy of the visual corruption functions introduced in our work. The functions can be broadly categorized
into five main classes similar to [36] which are further divided into multiple sub-classes, providing a detailed overview of the various types
of realistic corruptions that can affect the quality of the image. * indicates that the corruption effects are included in our framework results
of the corruption effects were not included in our work.

nique applied to spatial, frequency, and wavelet domains
using contrast stretching, histogram equalization, etc. The
contrast transformation is defined as, T (r) = (r−µ) ·c+µ
where µ represents the average pixel intensity and c rep-
resents the multiplicative constant. Similarly to arithmetic
noise, the outputs of all image transformation functions are
clamped.

In real-world applications, grayscale images are preva-
lent due to constraints on representing the color information
of a digital image. Several systems such as medical imag-
ing, document scanning, and security work with grayscale
images. On the other hand, systems like night vision, med-
ical imaging, astronomy, etc. use color-inverted images.
Grayscale can be categorized as a transformation function
that modifies the color property of the image. Grayscale
simply averages the intensity values over the color channels
i.e. T (r) = µC where µC represents the average pixel in-
tensity over the color channel. Color Inversion, previously
described as arithmetic noise, can be classified as an im-
age attribute transformation function since it modifies the
color property of an image. Grayscale Inversion is simply
the combination of grayscale and color inversion; defined
as T (r) = rmax − µC .

A.4. Blurring Effects

Blurring effects are produced by convolving with an
averaging filter and can be mathematically described as
T (I) = I ∗ K where I represents the digital image and
K represents the kernel and convolution operation for a 2D

image is defined as

(I ∗K)(x, y) =

M−1∑
i=0

N−1∑
j=0

I(i, j) ·K(x− i, y − j)

While Gaussian blur and median blur are the most com-
mon blurring functions, we shall define a few other blurring
functions that have common real-life applications. Defocus
Blur performs channel-wise convolution, and the function
is defined as T (I) = I ∗ Kr where Kr is a disk kernel
with radius r that varies across severity levels. Defocus blur
replicates the blurring effect in cameras when the subject is
out of focus. Zoom Blur occurs due to rapid camera motion
towards an object and Frosted Glass Blur imitates the ap-
pearance of an object while looking through frosted glass.
Most of these effects do not have strict definitions and fol-
lows the implementation by [28, 36].

A.5. Miscellaneous Effects

Apart from the previous transformation functions,
weather effects can impose a particular weather condition
on an image. At the time of writing this paper, our frame-
work includes the Snow Effect only but we wish to include
other effects like fog, frost, rain, and clouds in the future.
We produce the snow effect by creating a snow layer fol-
lowing the normal distribution, then applying the zoom op-
eration, followed by thresholding and motion blur. We use a
blending function on the input image and a scaled grayscale
version of this image, then add the snow layer and the ro-



tated snow layer to the image to generate the final output of
the snow effect.

Some transformation functions try to create Physical Ef-
fects on the images. The Splatter Effect makes the image
look like it has been splattered by paint or any form of liq-
uid. The Elastic Effect simulates the effect of stretching
or wrapping the image. Finally, we included a couple of
transformation functions that replicate digitization effects.
Digital images are discrete approximations of analog sig-
nals, thus various artifacts may remain from the conversion
process. The Pixelate Effect is a visual effect that creates
a mosaic-like appearance, similar to visible image pixels
appearing due to lower resolutions, by downsampling and
upsampling the image using bilinear interpolation. Pixela-
tion is commonly used for stylistic purposes and censorship.
JPEG Compression Effect tries to emulate the loss of im-
age information due to JPEG compression [58].

B. Additional Evaluation Metric Details

Nomenclature
General
v,V, V Model, Set of Models, Number of Models

c, C, C Corruption, Set of Corruptions, Number of Corrup-
tions

l,L, L Severity Level, Set of Severity Levels {1,2,3,4,5},
Number of Severity Levels

Accuracy Metrics
Av,c,l Accuracy for model v, corruption c, and severity

level l

Av,0 Base Accuracy for model v. Can be rewritten as
Av,c,0

Av,c Average Accuracy for model v and corruption c

Av Corruption-average Accuracy for model v

Ac Model-average Accuracy for corruption c

Arel
v Relative Accuracy Drop for model v

Arel
c Relative Accuracy Drop for corruption c

Robustness Metrics
Ev,c,l Error for model v, corruption c, and severity level l

Ev,0 Base Error for model v,. Can be rewritten as Ev,c,0

Mv,c Generalized Severity Aggregation Error Metric for
model v and corruption c

M′
v,c Non-scaled Severity Aggregation Error Metric for

model v and corruption c

M Set of Severity Aggregation Error Metrics
{F ,R, ρ, µ, δ}

Mv Corruption Aggregation Error Metric for model v

Mc Model Aggregation Error Metric for corruption c

F First-Drop

R Range of Error

ρ Error Rate

µ Average Error

δ Average Difference of Corruption Error

Visual Robustness Error
WM Weight assigned to Metric M
pM Preference Score assigned to Metric M
V REv Visual Robustness Error for model v

V REc Visual Robustness Error for corruption c

B.1. First-Drop Details

The rationale behind using relative difference instead of
difference is that the difference between level-1 and level-
0 errors will depend on the model’s base accuracy. The
relative difference does not have such a dependency and
can better capture the error when the model is introduced
to corruption effects while encapsulating the variations and
decoupling the base accuracy from the equation.

The word drop signifies the drop or decrease in accuracy
due to introducing the visual corruption. The term might
be misleading since, when calculating robustness error, the
addition of corruption increases the error. Higher first-drop
scores for a model-corruption pair indicate that the model is
more prone to lower levels of that particular corruption.

B.2. Range of Error Details

A clear distinction is made between the maximum er-
ror value and the error value at the highest severity level in
Eq. (11) as the error value at the highest severity level does
not imply that it has the maximum error value.

B.3. Robustness Evaluation Scenarios using VRE

Scenario 1. We assume the VQA model is deployed
in an environment where minor levels of visual corrup-
tion occur e.g. slight changes in weather or lighting con-
ditions. This scenario is well-suited for the first-drop eval-
uation metric, which captures robustness at lower severity
levels. The average error, which provides an overall estima-
tion of performance, can also be used. VRE can be tuned
by assigning more weight to the first drop and average error
metrics.

Scenerio 2. We consider that the VQA model is experi-
encing corruption effects that gradually increase in intensity
e.g. the images are getting blurrier or brighter over time. In
this case, the range of error and error rate can jointly evalu-
ate the robustness. VRE can be similarly tuned to prioritize
the aforementioned metrics.



Model Lvl Noise Blur Weather Image Attrribute Physical Digital

Shot Gaus Imp Spec Defo Zoom Snow Brig Cont Sat Elas Spl Pix JPEG

ViLT

0 0.287
1 0.326 0.290 0.297 0.290 0.295 0.392 0.341 0.287 0.290 0.290 0.292 0.286 0.280 0.282
2 0.374 0.304 0.314 0.293 0.307 0.439 0.395 0.291 0.298 0.307 0.296 0.317 0.281 0.285
3 0.460 0.329 0.334 0.321 0.332 0.472 0.424 0.301 0.317 0.323 0.305 0.348 0.284 0.290
4 0.526 0.369 0.380 0.336 0.359 0.503 0.458 0.312 0.407 0.356 0.329 0.370 0.291 0.303
5 0.569 0.436 0.437 0.364 0.387 0.525 0.475 0.328 0.567 0.359 0.366 0.408 0.340 0.322

BLIP

0 0.218
1 0.281 0.238 0.253 0.236 0.254 0.337 0.286 0.228 0.237 0.240 0.233 0.233 0.238 0.239
2 0.328 0.254 0.270 0.244 0.276 0.377 0.322 0.236 0.248 0.261 0.251 0.262 0.248 0.251
3 0.410 0.283 0.287 0.275 0.308 0.411 0.325 0.246 0.267 0.278 0.270 0.292 0.257 0.258
4 0.471 0.324 0.332 0.299 0.338 0.441 0.358 0.260 0.320 0.305 0.280 0.299 0.276 0.285
5 0.533 0.389 0.394 0.329 0.367 0.461 0.373 0.275 0.414 0.315 0.366 0.332 0.349 0.316

VLE

0 0.229
1 0.311 0.250 0.261 0.245 0.271 0.366 0.266 0.230 0.235 0.238 0.242 0.233 0.236 0.248
2 0.387 0.271 0.290 0.260 0.296 0.410 0.312 0.233 0.241 0.242 0.249 0.255 0.238 0.267
3 0.499 0.324 0.323 0.309 0.347 0.425 0.314 0.241 0.253 0.265 0.287 0.275 0.256 0.275
4 0.567 0.400 0.404 0.356 0.392 0.468 0.338 0.249 0.307 0.286 0.291 0.278 0.280 0.316
5 0.606 0.487 0.478 0.396 0.420 0.489 0.350 0.267 0.431 0.301 0.411 0.313 0.387 0.373

PNP

0 0.352
1 0.585 0.575 0.580 0.575 0.579 0.603 0.590 0.570 0.576 0.576 0.572 0.574 0.573 0.572
2 0.599 0.578 0.583 0.576 0.584 0.612 0.603 0.574 0.580 0.590 0.578 0.585 0.574 0.575
3 0.626 0.585 0.586 0.586 0.591 0.621 0.606 0.578 0.586 0.593 0.582 0.590 0.575 0.577
4 0.650 0.599 0.601 0.588 0.599 0.629 0.615 0.580 0.606 0.607 0.583 0.598 0.580 0.582
5 0.681 0.616 0.615 0.601 0.611 0.642 0.619 0.588 0.638 0.610 0.608 0.608 0.599 0.590

LLaVA-7B

0 0.217
1 0.298 0.246 0.262 0.256 0.275 0.301 0.296 0.217 0.226 0.231 0.225 0.229 0.217 0.218
2 0.341 0.267 0.280 0.264 0.291 0.348 0.319 0.221 0.239 0.245 0.234 0.257 0.217 0.220
3 0.396 0.281 0.303 0.273 0.313 0.372 0.322 0.230 0.249 0.271 0.249 0.291 0.222 0.225
4 0.453 0.319 0.341 0.312 0.338 0.413 0.347 0.243 0.315 0.294 0.277 0.299 0.229 0.231
5 0.542 0.374 0.407 0.346 0.369 0.452 0.361 0.259 0.397 0.301 0.349 0.327 0.283 0.267

LLaVA-13B

0 0.202
1 0.291 0.241 0.258 0.245 0.271 0.300 0.283 0.203 0.212 0.223 0.220 0.220 0.208 0.204
2 0.333 0.265 0.279 0.259 0.293 0.348 0.304 0.205 0.225 0.238 0.223 0.255 0.209 0.209
3 0.378 0.282 0.305 0.267 0.315 0.371 0.310 0.212 0.234 0.264 0.239 0.287 0.219 0.215
4 0.447 0.323 0.347 0.304 0.339 0.411 0.341 0.234 0.312 0.291 0.271 0.298 0.225 0.229
5 0.541 0.376 0.408 0.336 0.372 0.449 0.358 0.249 0.386 0.297 0.338 0.325 0.272 0.258

Table A.1. Error values of the model across various severity levels for different visual corruption effects. Green and red indicate the
minimum and maximum error values of that particular corruption and severity level respectively. The minimum values are observed at only
three corruption effects – brightness, pixelate, and JPEG, while the maximum values are observed at zoom blur and shot noise only.

C. Robustness across Question Types

The question category composition of our subsample
of the VQAv2 dataset [22] has been explored in fig-A.3,
where the “What” type questions are most frequently ob-
served. Following this, most of the questions encountered
by the VQA models are asked to classify certain objects
or their properties, for instance, “What is”, “What color”,
and “What animal”. The next two most encountered ques-
tion types, “Is” and “Are”, ask the model to verify the ex-
istence or absence of something in the image. These ques-
tions are inherently biased to allude to an object or an action
being present in the image itself. Thus, we conclude that the
questions from the VQAv2 dataset are not diverse and are

somewhat lacking in judging the model’s critical thinking
capabilities. Questions starting with “How to”, “Why is”,
“Who”, and more are rarer while the dataset lacks questions
challenging the counting ability of the model e.g. questions
with “How many”.

D. Discussion

D.1. The Necessity of Robustness

A model selected based on high average accuracy or low
average error may provide precise and correct predictions
under ideal conditions but becomes susceptible to produc-
ing erroneous outputs when faced with variations, uncer-
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Figure A.2. Error trends over severity levels. The standard VQA models – ViLT [39], BLIP [41], VLE [31], and LLaVA [45] exhibit a
somewhat linear rise while the zero-shot VQA model PNP [64] shows an initial sharp rise followed by a linear trend. Logarithmic trend
lines are observed by a few corruption functions e.g. zoom blur.

Corruption Is this What What is Is/are the How many What color is What kind of

Shot 0.731 0.363 0.312 0.711 0.398 0.557 0.412
Gaussian 0.812 0.454 0.432 0.764 0.466 0.698 0.528
Impulse 0.817 0.445 0.428 0.762 0.453 0.691 0.525
Speckle 0.828 0.476 0.457 0.771 0.483 0.722 0.546
Defocus 0.812 0.444 0.412 0.766 0.442 0.731 0.524
Zoom 0.731 0.369 0.297 0.683 0.350 0.663 0.413
Snow 0.771 0.428 0.389 0.741 0.431 0.656 0.491
Brightness 0.843 0.494 0.489 0.798 0.561 0.718 0.579
Contrast 0.814 0.453 0.433 0.769 0.457 0.659 0.518
Saturation 0.833 0.473 0.465 0.799 0.499 0.597 0.545
Elastic 0.811 0.462 0.451 0.774 0.466 0.758 0.546
Pixelate 0.849 0.480 0.467 0.783 0.486 0.756 0.557
JPEG 0.848 0.481 0.473 0.780 0.480 0.737 0.553
Spatter 0.815 0.460 0.422 0.772 0.479 0.720 0.531

Table A.2. Average accuracy across different types of questions for the visual corruption functions. The models primarily struggle with the
“How many” and “What is” questions.

tainties, or adversarial inputs. However, a robust model se-
lected based on multiple aspects exhibits a higher level of

resilience and generalization, capable of performing con-
sistently across a wide range of inputs, even in the face of



what

is

are

how
do

does
where

why
can

could

has

none

was

which
who

what is

what color

w
ha

t a
re

w
hat

w
hat anim

al

w
hat brand

w
hat does

w
hat kind

w
hat num

ber

what room

what sport

what time
what type

is the

is this

is there

is

is he

is it

is 
that

ar
e 

th
er

e
ar

e
ar

e 
th

e
ar

e 
th

es
e

ar
e 

th
ey

ho
w

 m
an

y

how do

do you
does the

does this
w

here are
where is
why

why is

can you

could

has

none of

was

which

who is

what is

what is in the
what is on the

what is the
what is the color of the

what is
 the man

what is
 th

e name

wha
t is

 th
e p

ers
on

wha
t is

 th
e 

wom
an

wha
t i

s 
th

is

w
ha

t c
ol

or

w
ha

t c
ol

or
 a

re
 th

e

w
ha

t c
ol

or
 is

w
ha

t c
ol

or
 is

 th
e

w
ha

t a
re

w
ha

t a
re

 th
e

w
hat

w
hat anim

al is

w
hat brand

w
hat does the

w
hat kind of

w
hat num

ber is

what room
 is

what sport is

what time
what type of

is the
is the manis the personis the woman

is this

is this a

is this an

is this person

is there

is there a

is

is he

is it

is 
that a

ar
e t

he
re

ar
e 

th
er

e 
an

y

are

ar
e 

th
e

ar
e 

th
es

e
ar

e 
th

ey
ho

w
 m

an
y

ho
w

 m
an

y 
pe

op
le

 a
re

ho
w

 m
an

y 
pe

op
le

 a
re

 in

how do

do you
does the

does this
w

here are the
where is the

why

why is the

can you

could

has

none of the above

was

which

who is

Figure A.3. Breakdown of different question types from the VQAv2 [22] dataset. The most frequent questions start with “What” followed
by “Is”, and “Are”.

perturbations or challenging scenarios. The increased ro-
bustness might come at the cost of sacrificing accuracy, as
the model adopts a more conservative or cautious approach
to minimize error.

The trade-off between accuracy and robustness is cru-
cial to consider when developing machine learning models
for various applications. Different contexts and use cases
may require varying degrees of emphasis on accuracy and
robustness. For instance, in safety-critical systems, such as
autonomous vehicles or medical diagnosis, robustness takes
precedence over accuracy to ensure reliable performance
even in uncertain or unpredictable situations. However, in
tasks where precision and correctness are paramount, sacri-
ficing some robustness may be acceptable to achieve higher
accuracy.

Understanding this trade-off enables researchers and
practitioners to make informed decisions when designing
models, striking a balance that aligns with the specific re-
quirements and priorities of the given application. It also

highlights the need for comprehensive evaluation metrics
that consider both accuracy and robustness, providing a
more holistic assessment of model performance. As high-
lighted in Fig. 7, our findings emphasize the delicate in-
terplay between accuracy and robustness in VQA models.
Recognizing and managing this trade-off is essential for de-
veloping models that align with the desired performance ob-
jectives in various real-world scenarios.

D.2. Mislabeling Problem in Grayscale Images and
Color Bias

Grayscale images are void of color and hence, the an-
swer to every color-related question on grayscale images
should either be unanswerable or a shade of gray. The an-
swers predicted by the model are given full scores as they
would match the ground truth color. But grayscaling an im-
age changes the ground truth and hence will require relabel-
ing to prevent inaccurately assessing a model’s performance
and robustness. As we did not relabel the grayscale images,



Problem Questions Ground Truth Predictions

Miscolor
What is the bike’s color? blue black
What color is the sky? blue gray
What is the color of the soap? yellow white

Undercount
How many spoons are there? 2 1
How many people are there? 5 3
How many kites are up? 4 3

Misclassify
What is she eating? sandwich cake
What is the weather like? sunny cloudy
What game is this? baseball soccer

Blindness
What’s on the television? baby nothing
Are the women selling? yes no
What is the cat eating? cake nothing

Irrationality
Which bowl has more oranges? front right
What is the man about to do? run bat
What is the man doing? standing flying kite

Table A.3. Different types of misprediction problems by ViLT [39] when introduced to the visual corruption effects.

performance related to grayscale images has not been cov-
ered in our work.

Fig. A.4 highlights a few color-related questions on
grayscale images where ViLT [39] predicted a color, indi-
cating that the model associated colors with shapes or struc-
tures in the image. As models were able to predict certain
colors on images void of color, we can hypothesize that
VQA models exhibit some form of color bias. For instance
- if the model sees the gray image of an apple, and is asked
“What is the color of the apple?”, it will most likely predict
red since most of the images of apples it was trained on had
the color red. Hence, it associated the color red with the
shape of the apple. Color bias is caused due to the model’s
inability to retrieve contextual information from the image
as seen in [22].

D.3. Zero-shot and Robustness

Experimental results reveal that the Zero-Shot VQA (ZS-
VQA) model PNP [64] is more prone to visual corruption
effects compared to traditional methods. However, exper-
iments were conducted on a single ZS-VQA model, the
subpar robustness performance cannot be generalized for
all ZS-VQA models. PNP exhibits a modular architecture
where the overall robustness will depend on the individ-
ual robustness of each module. The composing modules:
image-question matching module, image captioning mod-
ule, question-answering module, etc, exhibit different lev-
els of visual robustness. Trivially, we can say that the uni-
modal question-answering module is unaffected by visual
noise while the multimodal image-question matching mod-
ule and image captioning module are both susceptible to

(a)

(c) (d)

Q: What color is the tree?
A: green    P: green    GT: gray

Q: What is the red thing on the pizza called?
A: sauce    P: sauce    GT: sauce

Q: What is the color of the fire hydrant?
A: red    P: yellow    GT: gray

(b)

Q: What color is the background?
A: blue    P: blue    GT: gray

Figure A.4. Color-based questions on grayscale images causing
mislabeling problems for ViLT [39] and indicating the presence of
color bias.

visual noise.

The low robustness value of PNP can be loosely asso-
ciated with the low robustness of its composing modules.
If the modules are replaced with more robust counterparts,
then PNP might become a more robust model. Low ro-
bustness scores for ZS-VQA models might seem counter-
intuitive as these models are aimed towards handling unseen
or out-of-distribution data [18, 63]. By definition, ZS-VQA
models should adapt to different contexts and inputs, mak-
ing them more resilient to variations and uncertainties. This
characteristic is particularly valuable in real-world applica-



tions where encountering new or unexpected scenarios is
common.

D.4. Unanswerability

Can the corruption functions render some of the ques-
tions unanswerable at certain severity levels? Although this
is rare, higher corruption intensities can indeed make some
questions unanswerable, even by human evaluators. As the
VQA models are classifiers, they should predict the correct
answer class as “unanswerable” or “nothing”. However,
similar to grayscale images, this would create a mislabel-
ing problem as the original labels associated with the un-
corrupted images were answerable. One plausible solution
is manually relabelling the corrupted dataset which can be
accurate but costly and impractical.

E. Additional Future Directions
In pursuit of developing a universal robustness evalua-

tion framework, we aim to extend our work by including
textual noise, specifically on the input questions. Current
literature has explored various forms of textual noise e.g.
question paraphrasing, semantic error, syntax error [30,35].
Additionally, we propose to simulate typing errors on a
physical keyboard [40] by associating a probability distri-
bution with each letter being inserted, repeated, removed,
replaced, or exchanged with another letter. For instance,
the probability of replacement will depend on the proximity
of the other letter to the pivot letter based on the layout of
the keyboard.

We plan to incorporate consistency metrics [35] which
can be described as an evaluation metric to quantify
the model’s ability to provide consistent predictions with
changes to the input. For instance - for binary classifica-
tion, if the model predicts 0,1,0,1,0 for five severity levels
then it would be deemed inconsistent due to fluctuating pre-
dictions. We wish to explore the similarities and differences
between consistency and robustness.

Preprocessing the visual or textual input as a form of de-
noising [33, 54] might mitigate the performance drop due
to corruption effects. For a particular modality, the user
can opt to use white-box preprocessing i.e. processing the
input, given the corruption type, or black-box preprocess-
ing i.e. processing the input without any prior knowledge
of the corruption type. A VQA model utilizing a denoising
module might produce better robustness scores than stan-
dard approaches.

VQA models can also be trained on noisy data e.g. noise
textual labels [69]. The noisy data can include corrupted
images and textual noise on both questions and answers.
Additional explainable AI techniques in VQA [9, 44] can
be used to comprehend the processing of visual information
by models trained on noisy data during inferences. Train-
ing models on grayscale images while retaining the original

color labels can help us understand how models perceive
shades of grey and whether they associate a specific shade
with a particular color.
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