
Feature Design for Bridging SAM and CLIP
toward Referring Image Segmentation

–Supplementary Material–

Koichiro Ito
Hitachi, Ltd. R&D Group

koichiro.ito.tm@hitachi.com

Abstract

In this material, we provide supplementary explanations
of the existing methods utilized in our paper and the details
of the experiments necessary for the better understanding of
our paper.

1. Prompt encoder and mask decoder in SAM
SAM [2] accepts a diverse range of prompts for the seg-

mentation. In our paper, we design a dense feature pdense

and a sparse feature psparse for the mask estimation. Note
that in our method, we set the SAM decoder trainable, thus
we feed each feature to the decoder not as the prompt in
original usage. We first describe how to feed these features
into the SAM prompt encoder.

Sparse embedding: SAM originally contains query fea-
tures for the mask prediction and the iou prediction denoted
as pquery ∈ RNm×C and piou ∈ RC respectively, where
Nm = 3. In basic usage, prompts such as a bounding box
or a point information are encoded into the vector-level fea-
tures and concatenated with these queries. In our paper, our
sparse feature psparse ∈ RC is also concatenated with the
queries and fed into the SAM mask decoder.

Dense embedding: SAM also accepts a dense embed-
ding for its prompt, such as the binary mask information.
The dense feature pdense ∈ RP 2

CLIP×C extracted through
the pixel decoder from Ffused obtained from our DFEM
is added to the SAM image feature Fsam ∈ RP 2×C . Be-
fore this addition, the feature size of pdense is resized from
P 2
CLIP to P 2 through a 2D interpolation operation.

Next, in SAM mask decoder, cross attention between
these sparse embeddings and dense embeddings are con-
ducted to produce the output queries, from which the masks
are obtained.

Predicted Mask: SAM predicts multiple masks simul-
taneously, each correspond to its query feature pquery (with
Nm = 3 in default). We utilize the first index mask as

MSAM for the training and the evaluation.

2. GRES setting
Non-target branch: In the GRES setting [1, 4], the

model is required to conduct the multi-target or the non-
target prediction, which differs from RefCOCO/+/g prob-
lem setting. In our proposal, our model can adapt to the
multi-target setting because the model is not on the singu-
lar target assumption, but to handle non-target prediction,
we introduce an additional branch. Following the work [4],
we introduce an additional linear layer for predicting non-
target denoted as ynt ∈ R2 to the output X̂Nl

of DFAM as
follows:

ynt = ωnt(X̂Nl
), (1)

where ωnt is projection function. We also introduce the loss
function to ynt as follows:

Lnt = λntCE(ynt,y
∗
nt), (2)

where CE(·) is the cross entropy loss and y∗
nt is the ground

truth for the non-target prediction provided in the dataset.
We set λnt = 0.1 and added the loss to the total loss Ltotal

for the training. In the evaluation, we use the output ynt

following the works. The evaluation protocols between the
works [1, 4] are slightly different. We follow each work on
our comparison.

Sparse feature design: In the GRES setting, the coco
category to the expression in non-target situation is not pro-
vided. Thus, we utilize LBERT,[CLS] ∈ RC instead of
Lcat ∈ RC for the design of the sparse feature p′

sparse as
follows:

p′
sparse = LayerNorm(LBERT,[CLS] (3)

+ CrossAttn (LBERT,[CLS],LBERT)). (4)

The sparse feature design above is different from the
original one described in Sec. 3.4. We conduct experiment



Table 1. The effect of p′
sparse on RefCOCO+ dataset.

Sparse feature Val TestA TestB
oIoU mIoU oIoU mIoU oIoU mIoU

psparse 66.19 70.56 72.37 75.87 56.75 62.08
p′

sparse 66.08 70.08 71.02 75.41 56.70 61.89

Table 2. Parameter sizes of each component (in millions of param-
eters [M]).

CLIP ViT SAM ViT SAM Decoder BERT DFAM PWAM Total
Frozen 304.3 89.67 – – – – 394.0
Trainable – – 4.06 108.9 6.90 7.88 130.0

on RefCOCO+ using p′
sparse and shows result on Tab. 1.

As can be seen in the table, this did not cause a big differ-
ence in the RIS result.

Implementations: The computational cost of SAM’s
ViT is expensive, so to enhance experimental efficiency, we
pre-extracted the image feature from the encoder as pickle
files before the training process. We used BERT through
the Hugging Face library. The feature dimensions output
by each encoder were CSAM = 1024, CCLIP−V = 1024,
and Ct = 768. To handle these features in a unified dimen-
sion, we applied a linear layer to project them to C = 256.
This mapping aligned the feature dimensions of DSAM ac-
cordingly.

Both SAM and CLIP require a predetermined resolu-
tion of images, so we resized the images to 10242 and
3362 pixels, respectively, before inputting them. This re-
sizing to square inputs allows for the alignment of FSAM

and pdense when fed into SAM decoder DSAM. Since RIS
involves language queries that inquire about the spatial re-
lationships between objects, we did not apply any augmen-
tation to the input images. We set Nq = 100 in DFAM
and Nl = 3 for number of layers. The hyperparameters
used in the loss function described in Sec. 3.5 were set
as follows: λDice = 2, λBCE = 0.5, λDFAM = 1.0,
λDice,l = 5, λBCE,l = 5, and λVL,l = 1. The batch size
was set to 32, and the initial learning rate was 5e− 5.

3. Additional Evaluations
In this section, we provide additional evaluations to fur-

ther validate the effectiveness of our proposed method.

3.1. The module sizes on our model

In the main paper, we discussed the overall computa-
tional cost of the proposed method. Here, we provide ad-
ditional details regarding the parameter sizes of each com-
ponent of the model, as shown in Tab. 2.

As seen in Tab. 2, the frozen components (CLIP ViT and
SAM ViT) account for the majority of the model’s param-
eter size, while the trainable components (SAM Decoder,
BERT, DFAM, and PWAM) add up to a smaller portion.

Table 3. Reproduced ReLA on RefCOCO/g in terms of oIoU and
mIoU. U: UMD split.: † indicates the model reproduced by us.

Methods RefCOCO G-Ref
Val Test A Test B Val(U) Test(U)

oIoU
ReLA [4] 73.82 76.48 70.18 65.00 65.97
ReLA † [4] 73.73 76.71 69.98 64.40 65.63
Ours 74.80 78.02 69.96 65.34 67.08
mIoU
ReLA † [4] 76.06 78.19 73.05 67.87 68.45
Ours 76.75 79.55 72.74 69.56 70.34

Table 4. The evaluation on Precision@X on G-ref umd.: † indi-
cates the model reproduced by us.

Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9
G-ref val
ReLA † [4] 76.92 72.90 66.79 56.70 29.68
ours 78.16 74.75 69.85 60.04 33.61
G-Ref test
ReLA † [4] 77.55 73.50 67.70 57.08 30.65
ours 79.34 75.52 70.38 60.95 34.57

The trainable parameter contains other components such
as projection layers, convolution and deconvolution in SFP
etc. This division highlights the efficiency of our method in
terms of trainable parameters, as the majority of the model
remains frozen, contributing to the training efficacy. We did
not count the parameters on CLIP-T here, since we can ex-
tract the class category feature Lcat in advance before the
actual inference.

3.2. Analysis on IoU distribution

We further evaluate the model performance regarding the
IoU. We utilize the ReLA model parameters trained on gRe-
fCOCO which is publicly available. On the other hand, we
trained the ReLA model on RefCOCO and G-Ref for com-
parison since the trained models for these datasets are not
released. The reproduced result is also shown in Tab. 3.

Fig. 1 shows the histograms of the IoU distribution on
gRefCOCO, RefCOCO and G-ref umd split. Fig. 1(a)
shows that the distribution of the histogram is skewed to-
wards the higher values, demonstrating the superiority of
our proposed method on the gRefCOCO. When evaluating
on gRefCOCO, we use the gIoU metric, which results in
a high frequency of IoU = 1.0 on each method. Fig. 1(b)
shows the competitive performance of our method since it
is not suited to handling simple language expressions in Re-
fCOCO as discussed in the paper. However, Fig. 1(c) shows
our superiority on G-ref.

Since ReLA uses a learnable encoder, it is likely to be
adaptable to the dataset producing high IoU value. Regard-
ing our method, our training method can effectively spec-
ify the target object when the language expressions in the
training data are precise enough to narrow down the target
in cases such as gRefCOCO and G-ref dataset.



(a) Comparison on grefCOCO

(b) Comparison on RefCOCO

(c) Comparison on G-Ref umd split

Figure 1. Comparative IoU histograms between Ours and ReLA on G-Ref umd and grefCOCO

Tab. 4 evaluate the methods using Precision@X (Pr@X).
Pr@X counts the percentage of samples with IoU higher
than the threshold X. The table is almost identical to
Fig. 1(c) and easy for visualizing the performance. The ta-
ble shows our method shows superiority regarding the pre-
cision increased as the IoU threshold become higher.

3.3. Comparison with LLaVA based method

Here, we compare our method with the LLaVA-based
method in Tab. 5. LISA [3] is composed of a 7B LLM,
CLIP, SAM and a LoRA adapter. The model compo-

nent is similar to us expept the use of LLM. The model
is trained on VQA and segmentation datasets in addition
to RefCOCO/+/g. Therefore, comparing with LISA puts
our method at a disadvantage. Even so, our method re-
mains competitive on RefCOCO/+ despite LISA utilizing
an LLM and having a significantly larger model size. How-
ever, LISA excels on G-ref, where language expressions are
more complex, thanks to the LLM’s extensive vocabulary
capacity. The work of [5] further improves performance
thanks to their pre-training method, but the increase in train-
ing data in their work makes direct comparison difficult.



Table 5. Comparative results on RefCOCO/+/g in terms of oIoU.

Methods Size RefCOCO RefCOCO+ G-Ref
Val Test A Test B Val Test A Test B Val(U) Test(U)

ReLA [4] 225M 73.82 76.48 70.18 66.04 71.02 57.65 65.00 65.97
CGFormer [6] 251M 74.75 77.37 70.64 64.54 71.00 57.14 64.68 65.09
LISA [3] 7.3B 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6
Ours 524M 74.80 78.02 69.96 66.19 72.38 56.75 65.34 67.08

References
[1] Yutao Hu, Qixiong Wang, Wenqi Shao, Enze Xie, Zhenguo Li,

Jungong Han, and Ping Luo. Beyond one-to-one: Rethinking
the referring image segmentation. In Proc. of ICCV, pages
4067–4077, 2023. 1

[2] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross
Girshick. Segment anything. arXiv:2304.02643, 2023. 1

[3] Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan,
Shu Liu, and Jiaya Jia. Lisa: Reasoning segmentation via
large language model. In Proc. of CVPR, pages 9579–9589,
2024. 3, 4

[4] Chang Liu, Henghui Ding, and Xudong Jiang. Gres: Gener-
alized referring expression segmentation. In Proc. of CVPR,
pages 23592–23601, 2023. 1, 2, 4

[5] Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrah-
man Shaker, Salman Khan, Hisham Cholakkal, Rao M Anwer,
Eric Xing, Ming-Hsuan Yang, and Fahad S Khan. Glamm:
Pixel grounding large multimodal model. In Proc. of CVPR,
pages 13009–13018, 2024. 3

[6] Jiajin Tang, Ge Zheng, Cheng Shi, and Sibei Yang. Con-
trastive grouping with transformer for referring image seg-
mentation. In Proc. of CVPR, pages 23570–23580, June 2023.
4


