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1 Data collection & curation

We sourced most of our dataset from the digitised collections of the following
cultural heritage institutions:

— The Metropolitan Museum of Art
— The US National Archives

— The Library of Congress

— The Philadelphia Museum of Art
— The J. Paul Getty Museum

— The Louvre

— The Rijksmuseum

— The Victoria & Albert Museum
— The British Museum

— The British Library

— The National Gallery of Scotland
— The Burrell Collection

— The British National Portrait Gallery
— The National Library of Ireland
— The Fitzwilliam Museum

— The Bavarian National Museum
— The Albert-Kahn Museum

The remainder of the images were collected from Wikimedia, and from Flickr
groups dedicated to vintage photographs, such as Wallet Worn and Vintage
Scans. All images were made available in the Public Domain by their authors,
and collected under CC0, CC-BY and CC-BY-NC licenses. For each image we
acquired the highest resolution available, with the average image height and
width in our dataset being 2496 and 2306 pixels respectively, and the maximum
height and width reaching 11233 and 12797 pixels, allowing for flexibility in pre-
processing depending on the task. All text annotations (Content and Materual
classifications, Type classification and descriptions) are provided in a tabular
format along with source attribution. Ground-truth segmentation masks are pro-
vided in a standard format as single-channel PNG files, along colour-coded RGB
segmentations for visualisation purposes. Examples shown in Table 1.


https://www.metmuseum.org
https://www.archives.gov
https://www.loc.gov
https://www.philamuseum.org
https://www.getty.edu
https://www.louvre.fr
https://www.rijksmuseum.nl
https://www.vam.ac.uk
https://www.britishmuseum.org
https://www.bl.uk
https://www.nationalgalleries.org
https://www.glasgowlife.org.uk/museums/venues/the-burrell-collection
https://www.npg.org.uk
https://www.nli.ie
https://www.fitzmuseum.cam.ac.uk
https://www.bayerisches-nationalmuseum.de
https://albert-kahn.hauts-de-seine.fr
https://commons.wikimedia.org/wiki/Main_Page
https://www.flickr.com/groups/2733413@N25/pool/
https://www.flickr.com/groups/vintagescans/
https://www.flickr.com/groups/vintagescans/
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Table 1: Example segmentation, class and text annotations from our dataset.

Type: Painting

Material: Wood

Content: Artistic depiction

LLaVA description: A woman wearing a dress and a crown is
depicted in a painting on wood.

Our description: Portrait painting of woman wearing a dress
and a crown.

Damage description: The painting has cracks, dirt spots,
scratches and peels.

Type: Photo

Material: Paper

Content: Photographic depiction

LLaVA description: A man wearing a uniform and a hat is
smoking a cigarette.

Our description: Photo portrait of a man wearing a uniform.
Damage description: The photo has , , scratches
and peels.

Type: Book cover

Material: Paper

Content: Artistic depiction

LLaVA description: A book cover featuring a woman and a

bird, with the woman wearing a flowing dress and holding a bird

in her hand.

Our description: Book cover illustration of a woman in a dress

in a mirror facing a bird with long feathers sitting on a branch.

Damage description: The book cover has , writings,
, scratches, peels and

Type: Mosaic

Material: Tesserae

Content: Artistic depiction

LLaVA description: A mosaic on tesserae depicting a cat and
a duck, with the cat standing over the duck, and a bird in the
foreground.

Our description: Mosaic of a cat catching a duck above other
ducks eating from a pile of fish and clams in the foreground.
Damage description: The mosaic has cracks and peels.

Type: Tile

Material: Ceramic

Content: Geometric pattern

LLaVA description: A tile on ceramic depicting a green and
red design, with a flower pattern and a cross in the center.
Our description: Ceramic tile depicting a green and red design,
with a flower pattern and a cross in the center.

Damage description: The tile has , scratches
and peels.
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2 Image-level caterogorisation and textual descriptions

2.1 Content and Material categories.
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Fig. 1: CLIP embeddings of the images in the dataset, dimensionality reduced via t-
SNE. Each colour corresponds to a material (a) or content (b) category as provided in
our dataset.

Figure 1a shows that our Content categories assigned by our experts are well
separeted in the CLIP image feature space, since CLIP focuses on semantic im-
age content. Material labels form “fuzzier" regions in Figure 1b, demonstrating
the diversity of objects depicted in the images across Material classes, while
also indicating that certain subject matters are more commonly depicted on cer-
tain materials, e.g. Textile will most commonly have stylised Geometric pattern
depictions.
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(a) Damage type frequency by Material. (b) Damage type frequency by Content.

Fig. 2: Distributions of kinds of damage across the two proposed splits, Material and
by Content.

It can also be observed that certain types of damage occur more frequently in
images of certain content, as shown in Figure 2b, however, this is less pronounced
than for different material types, as shown in Figure 2a.
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Table 2: Cosine distances between the CLIP embeddings of image descriptions gener-
ated by LLaVA and our descriptions, averaged across Material and Content classes.

Material Content
LLaVA vs . Film Lime . o Artistic Geometric Line Photographic
Canvas Ceramic . Glass Paper Parchment Tesserae Textile Wood |~ .~ o
emulsion plaster depiction patterns —art depiction
Ours 0.801 0.861  0.731 0.772 0.744 0.73  0.700 0.792  0.752 0.747  0.742 0.789  0.682 0.751
LLaVA + Da description 0.917  0.924  0.818 0.895 0.928 0.909  0.884 0.971  0.951 0.935 0.920 0.935  0.923 0.883
Ours + "Dan " 0.740 0812  0.649 0.696 0.713 0.659  0.669 0.756  0.722 0.705 0.699 0.746  0.646 0.656

Ours + Damage description ~ 0.761  0.820  0.613 0.716 0.743 0.689  0.665 0.787 0.736 0.725 0.715 0.766  0.660 0.685

2.2 Textual descriptions.

We provide textual descriptions for each image, detailing both content and dam-
age types. The expert descriptions are derived by correcting draft captions pro-
duced by LLaVA [1], by prompting it with the following: This is a <type> on
<material>. Describe what this image depicts concisely, in a single sentence,
but be as detailed as possible, also noting the initial information about the type
of image and the media it is depicted on. The resulting descriptions were then
manually verified and corrected by our annotation experts. We derived separate
damage descriptions from our pixel-level annotations. To illustrate how much
human experts improve on LLM-generated captions, we computed cosine simi-
larity between LLaVA and expert descriptions using CLIP text embeddings (Ta-~
ble 2), quantifying LLaVA’s “incorrectness" regarding semantic image content.
We also report distances between original LLaVA descriptions and: extended
LLaVA descriptions, extended expert descriptions, and expert descriptions pre-
fixed with “Damaged." Specifying damage presence decreases cosine similarity,
showing LLaVA’s failure to recognize damage, often ignoring or misinterpret-
ing it. For instance, in the second example in Table 1, LLaVA’s caption is A
man wearing a uniform and a hat is smoking a cigarette, entirely omit-
ting the presence of damage, and misinterpreting a peeled area pf the photo-
graph as a cigarette. In contrast, our expert annotation is Photo portrait of
a man wearing a uniform, while the damage description reads The photo has
s , scratches and peels.

3 Qualitative assessment

3.1 Supervised segmentation

We qualitatively compared the segmentation masks produced by various models
across distinct materials. We show the outcomes for both binary and multi-
class segmentation tasks. The selected images cover a wide range of damage
type where state-of-the-art models encounter difficulties in achieving optimal
performance.

Binary segmentation Binary segmentation is the easier setting of the task, where
the models learn to differentiate between damaged and non-damaged areas of the
images, without needing to classify the type of damage. The qualitative results
shown in Figure 3 for Material categories and in Figure 4 for Content categories
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support our quantitative evaluation results, showing that SegFormer marginally
outperforms the other models, but overall model performance is poor. All models
are prone to making false positive predictions, and struggle with both small-scale
artefacts such as Dust and Hairs in photos. The DinoV2 + MLP model, which is
the worst performing according to the quantitative evaluation, fails at predicting
large missing areas, and instead only focuses on the edges of such artefacts (e.g
in Glass, Tesserae, Artistic depiction categories).

Table 3: Weighted average metrics per damage types across Material categories for
each model at the task of multiclass semantic segmentation of damage.

UPerNet UPerNet DinoV2 SAM ViT-H

Segformer + Swin + ConNeXt + MLP + MLP

Damage Type

Acc F1 IoU Acc F1 IoU Acc F1 IoU Acc F1 IoU Acc F1 IoU

Material loss 0.458 0.543 0.38 0.767 0.71 0.572 0.713 0.685 0.548 0.517 0.427 0.277 0.294 0.095 0.051
Peel 0.236 0.294 0.176 0.31 0.371 0.233 0.327 0.392 0.249 0.395 0.359 0.226 0.101 0.108 0.059
Dust 0 0 0 0 0 0 0 0 0 0 0 0  0.005 0.004 0.002
Scratch 0.008 0.007 0.004 0.047 0.049 0.026 0.087 0.101 0.056 0 0 0 0.017 0.009 0.004
Hair 0 0 0 0 0 0 0 0 0 0 0 0 0 0.001 0

Dirt 0.04 0.047 0.025 0.141 0.132 0.071 0.149 0.14 0.076 0.007 0.003 0.002 0.008 0.007 0.004
Fold 0.021 0.018 0.01 0.493 0.489 0.33 0.583 0.517 0.356 0.012 0.009 0.005 0.009 0.013 0.007
Writing 0.292 0.245 0.167 0.474 0.405 0.263 0.448 0.36 0.224 0.592 0.302 0.197 0.016 0.024 0.013
Cracks 0.051 0.062 0.033 0.099 0.131 0.073 0.124 0.14 0.078 0.245 0.216 0.126 0.02 0.029 0.015
Staining 0.038 0.036 0.019 0.245 0.221 0.141 0.287 0.257 0.168 0.023 0.024 0.013 0.002 0.003 0.001
Stamp 0 0 0 0 0 0 0 0 0 0 0 0 0.003 0 0

Sticker 0 0 0 0 0 0 0 0 0 0 0 0 0.017 0.002 0.001
Puncture 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Burn marks 0 0 0 0 0 0 0 0 0 (0] 0 0 0 0 0

Lightleak 0 0 0 0 0 0 0 0 0 0.008 0.007 0.004 0.003 0.003 0.001

Table 4: Weighted average metrics per damage types across Content categories for
each model at the task of multiclass semantic segmentation of damage.

UPerNet UPerNet DinoV2 SAM ViT-H

Segformer + Swin + ConNeXt + MLP + MLP

Damage Type

Acc F1 IoU Acc F1 1IoU Acc F1 IoU Acc F1 IoU Acc F1 IoU

Material loss 0.572 0.522 0.357 0.576 0.517 0.356 0.621 0.517 0.353 0.539 0.409 0.262 0.306 0.115 0.061
Peel 0.181 0.231 0.133 0.2 0.218 0.124 0.207 0.24 0.138 0.345 0.333 0.206 0.069 0.078 0.042
Dust 0 0 0 0 0 o] 0 0 0 0 0 0 0 0 0
Scratch 0.001 0.001 0.001 0.012 0.02 0.01 0.011 0.012 0.006 O 0 0 0.04 0.008 0.004
Hair 0 0 0 0 0 o] 0 0 0 0 0 9] [0 0 0
Dirt 0.02 0.012 0.007 0.046 0.017 0.009 0.06 0.075 0.039 O 0 0 0.002 0.002 0.001
Fold 0.197 0.155 0.086 0.166 0.128 0.07 0.188 0.186 0.104 0.194 0.131 0.07 0.021 0.021 0.011
Writing 0.106 0.021 0.012 0.172 0.095 0.063 0.216 0.112 0.068 0.433 0.14 0.079 0.033 0.023 0.012
Cracks 0.021 0.006 0.003 0.026 0.011 0.006 0.026 0.012 0.006 0.016 0.009 0.005 0.003 0.004 0.002
Staining 0.04 0.034 0.018 0.131 0.077 0.041 0.083 0.079 0.041 0.004 0.005 0.002 0.019 0.014 0.007
Stamp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sticker 0 0 0 0 0 0 0 0 0 0 0 0 0.057 0.001 O
Puncture 0 0 0 0 0 0 0.051 0.053 0.029 O 0 0 0 0 0
Burn marks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lightleak 0 0 0 0 0 (o] 0 0 0 0 0 9] 9 0 0

Multi-class segmentation In the multi-class segmentation setting, models also
need to differentiate between the different types of damage. We provide quali-
tative results in Figure 5 across Material test categories, and in Figure 6 across
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Paper Textile Lime plaster Ceramic Wood

DinoV2+MLP UPerNet+ComvNeXt UPerNet+Swin SegFormer Ground truth Image

SAM ViT-H+MLP

Fig. 3: Qualitative comparison for binary damage segmentation across Material cate-
gories.
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Film emulsion Parchment Canvas Glass Tesserae

DinoV2+MLP UPerNet+ComvNeXt UPerNet+Swin SegFormer Ground truth Image

SAM ViT-H+MLP

Fig. 3: Qualitative comparison for binary damage segmentation across Material cate-
gories.
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Art depiction Photographic depiction Line art Geometric patterns

DinoV2+MLP UPerNet+ComvNeXt UPerNet+Swin SegFormer Ground truth Image

SAM ViT-H+MLP

Fig. 4: Qualitative comparison for binary damage segmentation across Content cate-
gories.
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Content test categories. The predictions are similarly poor as in the binary set-
ting across all four models. We can observe that even when the damaged area is
correctly detected, models often assign it an incorrect class. We further examine
this behavior by computing metrics for each specific damage type, as summarised
in Table 3 and Table 4 for Material and Content categories respectively. The val-
ues in the tables are averaged across all LOOCYV splits and weighted based on
the frequency of Damage type per each Material or Content category. In some
cases (LOOCV Content splits), all instances of a certain type of damage be-
long in the same test class - e.g., all Lightleaks would be in the Photographic
depiction category, hence they are either all in the training or the test data.

Qualitatively, performance is exhibited across all damage types in the Con-
tent splits, including ones such as Material loss and Peel, which are common in
multiple categories. We see that the models cannot successfully segment large-
scale damage; they also fail at detecting very small-scale damage types, such as
Dust, Scratches, and Hairs, contributing to its poor performance in the Photo-
graphic depiction class.

When Lightleaks are not unique to a specific category, as in the Material
split, Table 3 shows that the linear probes of DinoV2 and SAM are the only
models which score above 0 in all three metrics for this damage type, but still
achieve an extremely low score. Dust and Scratches are again where the other
three models fail as well; furthermore, all models struggle with Stamps, Stickers,
Burn marks.

Where models do make somewhat successful predictions, they show simi-
lar performance to the binary setting, highlighting edges and failing at more
"blobby" damage instances. Still, false positives are incredibly common, with
models detecting arbitrary image features as damage.
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Paper Textile Canvas Ceramic Wood

DinoV2+MLP UPerNet+ComvNeXt UPerNet+Swin SegFormer Ground truth Image

SAM ViT-H+MLP

Fig. 5: Qualitative comparison for multiclass damage segmentation across Material
categories.
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Film emulsion Parchment Lime plaster Glass Tesserae

DinoV2+MLP UPerNet+ComvNeXt UPerNet+Swin SegFormer Ground truth Image

SAM ViT-H+MLP

Fig.5: Qualitative comparison for multiclass damage segmentation across Material
categories.
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Art depiction Photographic depiction Line art Geometric patterns

DinoV2+MLP UPerNet+ComvNeXt UPerNet+Swin SegFormer Ground truth Image

SAM ViT-H+MLP

Fig. 6: Qualitative comparison for multiclass damage segmentation across Content
categories.
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Table 5: Results across both Material and Content splits for DiffEdit binary mask
generation in both center cropped and full resolution settings.

Test class DiffEdit (Crop) DiffEdit (Full Res)

Acc F1 mlIoU Acc F1 mlIoU

Wood 0.77 0.13 0.07 0.74 0.15 0.08
Ceramic 0.70 0.13 0.07 0.67 0.19 0.10
Textile 0.79 0.19 0.11 0.74 0.18 0.10
Lime Plaster 0.72 0.18 0.10 0.70 0.18 0.10
Canvas 0.79 0.21 0.12 0.78 0.26 0.15
Tesserae 0.76 0.11 0.06 0.71 0.90 0.05
Paper 0.81 0.16 0.09 0.78 0.19 0.11
Glass 0.78 0.19 0.11 0.76 0.21 0.12
Film emulsion 0.78 0.08 0.04 0.73 0.11 0.06
Parchment 0.83 0.13 0.07 0.78 0.11 0.06
Geom Patterns 0.80 0.20 0.12 0.76 0.19 0.11
Line Art 0.84 0.14 0.08 0.79 0.14 0.08
Photo Depiction 0.79 0.18 0.10 0.77 0.22 0.13
Art Depiction 0.79 0.13 0.07 0.75 0.14 0.08

3.2 Zero-shot generative segmentation

In addition to quantitatively comparing DiffSeg and DiffEdit in the main paper,
we visualise qualitative results in Figure 7. Additionally, we show a qualitative
comparison between DiffEdit used on center-cropped images and in full reso-
lution following the patch-process methodology described in the main paper,
Figure 8. Quantitative results are shown in Table 5. Results are presented over
all categories of Material and Content, and cover various types, scales, and degree
of damage.

3.3 DiffEdit

We can observe that while the approach may sometimes predict damaged areas
correctly, it tends to also highlight generally salient features, discriminative fea-
tures such as faces, as well as high frequency features, none of which are related
to the prompt. The detection of high-frequency features is particularly common
when working in full resolution. Since the denoising process is performed over
the later portion of steps in the denoising chain, this behaviour can be explained
via the property of diffusion models to generate more fine-detailed features at
later steps [2]. We find that the approach is extremely sensitive to scale, making
inconsistent predictions over center-cropped areas compared to over the entire
images. The results support our quantitative evaluation, demonstrating further
that language guidance is too imprecise to describe damage. Furthermore, we
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show that the averaged noise prediction approach used by DiffEdit does not pro-
vide disentanglement between predicted noise variance from language condition-
ing and predicted noise variance over high-frequency features due to the choice
of denoising step range. These results illustrate that while modern multi-modal
generative approaches may show promising results in general purpose image seg-
mentation via text conditioning, they fail at the task of damage detection - this
highlights the complexity of our task.

3.4 DiffSeg

Although DiffSeg achieves better quantitative scores (partly due to the use of an
oracle), we can see in Figire 7 that it struggles with higher frequency damage.
This is due to the fact that with this approach the segmentation process is
performed at a very low-resolutions at which the self-attentions is extracted, the
highest being 64 x 64; the even lower latent resolutions of 16 x 16 and 32 x 32
might be helpful when forming general semanic clusters, but here they also fail
to capture finer artefacts.
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DiffSeg DiffEdit DiffSeg DiffEdit DiffSeg DiffEdit

Ground Truth Image

Prediction

DiffSeg DiffEdit DiffSeg DiffEdit DiffSeg DiffEdit

Ground Truth Image

Prediction

Fig. 7: Qualitative comparison for diffusion-based damage segmentation between Diff-
Seg and DiffEdit.



16 D. Ivanova et al.

DiffSeg DiffEdit DiffSeg DiffEdit DiffSeg DiffEdit

Ground Truth Image

Prediction

DiffSeg DiffEdit DiffSeg DiffEdit DiffSeg DiffEdit

Ground Truth Image

Prediction

Fig. 7: Qualitative comparison for diffusion-based damage segmentation between Diff-
Seg and DiffEdit.
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DiffSeg DiffEdit DiffSeg DiffEdit DiffSeg DiffEdit

Ground Truth Image

Prediction

DiffSeg DiffEdit DiffSeg DiffEdit DiffSeg DiffEdit

Ground Truth Image

Prediction

Fig. 7: Qualitative comparison for diffusion-based damage segmentation between Diff-
Seg and DiffEdit.
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Full res Crop Full res Crop Full res Crop

Ground Truth Image

Prediction

Full res Crop Full res Crop Full res Crop

Ground Truth Image

Prediction

Fig. 8: Qualitative comparison for text-guided damage segmentation using DiffEdit
over center-cropped images and in full resolution.
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Fig. 8: Qualitative comparison for text-guided damage segmentation using DiffEdit
over center-cropped images and in full resolution.
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Full res Crop Full res Crop Full res Crop

Ground Truth Image

Prediction

Full res Crop Full res Crop Full res Crop

Ground Truth Image

Prediction

Fig. 8: Qualitative comparison for text-guided damage segmentation using DiffEdit
over center-cropped images and in full resolution.
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