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A. Implementation Details
A.1. Motion Parameters

We define our motion parameter to be a set of 6D pose
parameter and the expanded root translation transition as
written below:

M =
[
θflat
6D, MLP

3→144
(∆x)

]
∈ R144+144 (1)

Using 6D pose parameters is widely known to help the net-
work to train and inference the rotation values [1], while
using a root transition instead of the absolute root position
value and even expanding its dimension is not a common
sense. To justify our choice, we conducted an experiment
and compare motion autoencoding performance of the mo-
tion prior when the root translation type (x or ∆x) and the
dimension (3 or 144) change. Table A.1 verifies our choice
of using the dimension-expanded ∆x by showing that the
reconstruction errors are the best among all choices. In-
creasing the dimension of ∆x enhanced the motion autoen-
coding performance especially for the root translation esti-
mation.

A.2. Synthetic Dataset Generation

We report additional implementation details of the syn-
thetic dataset generation process.

Point Clouds To create a synthetic point cloud dataset,
we use the Open3D [11] library, which provides various
functions for handling 3D data. First, we generate synthetic
depth images of a moving SMPL [6] mesh. We position a
virtual camera by randomly rotating it around a vertical axis
and orient it to face the root position at the midpoint of the
motion sequence. After setting the camera’s position and
orientation, we capture depth images of the SMPL mesh

Type Dim. Pose [◦] Trans. [cm] Joint [cm]

x 3 0.92 6.06 6.96
x 144 0.93 7.58 8.31
∆x 3 0.91 2.92 3.88
∆x 144 0.91 2.26 3.68

Table A.1. Verification of using an expanded ∆x for our motion
parameter.

sequence at a resolution of 640 × 480. We then generate
a depth point cloud consisting of 1,024 points from these
depth images.

For the synthetic LiDAR scan dataset, we utilize the
same depth images used for generating depth point clouds.
To simulate the sparsity characteristic of LiDAR scans, we
downsample the depth images by taking every fifth row and
column. From these sparse depth images, we randomly
sample points to create LiDAR scans, each consisting of
256 points.

IMUs For the synthetic IMU sensor dataset, we follow
the procedure outlined in DIP [2]. We begin by attaching
six virtual IMU sensors to specific vertices of the SMPL [6]
mesh. The attachment points are the left arm (vertex: 1962),
right arm (vertex: 5431), left leg (vertex: 1096), right leg
(vertex: 4583), head (vertex: 412), and root (vertex: 3021).
Next, we animate the motion sequence to record the accel-
eration and orientation of the virtual sensors. The generated
sensor data are then paired with the SMPL parameters to
form a synthetic dataset.

A.3. Hyperparameter Setup

We show the hyperparameter settings we used to train
ReMP. Tables A.2 and A.3 show the hyperparameter setup



Train Architecture Loss

Nepoch 2,000 T 40 wθ 1.0
Ndecay,1 1,200 rmask 0.8 w∆θ 10.0
Ndecay,2 1,600 Dz 128 wx 10.0
lr 1e-4 DTr,z 256 w∆x 100.0

DTr,ff 1024 wJ 1.0
NTr,layer 4 wV 1.0
NTr,head 8 wprior

KL 0.4

Table A.2. Hyperparameter setup for the motion prior training
phase. We classify the hyperparameters into three groups, hy-
perparameters related to the training, architecture, and the loss
weights.

Train Architecture Loss

Nepoch 2,000 T 40 wθ 1.0
Ndecay,1 1,200 rmask 0.2 w∆θ 10.0
Ndecay,2 1,600 Dz 128 wx 10.0
lr 1e-4 D′

I 128 w∆x 100.0
DTr,z 256 wJ 1.0
DTr,ff 1024 wV 1.0
NTr,layer 4 wreuse

KL 0.1
NTr,head 8 wβ 0.1

Table A.3. Hyperparameter setup for the motion prior reusing
phase. We classify the hyperparameters into three groups, hy-
perparameters related to the training, architecture, and the loss
weights.

for the motion prior training and the reusing prior, respec-
tively.

Nepoch is the total epoch of the training and when
the training reaches the epoch of Ndecay,1 or Ndecay,2, the
learning rate lr decreases to lr/4 and lr/10, respec-
tively. We use a sequence of time length T to be 40
and mask out the sequence with the ratio of rmask using
a key padding mask in the transformer [8] encoder.
DTr,z , DTr,ff, NTr,layer, and NTr,head refer to the intermediate
latent dimension, feedforward size, number of layers, and
number of heads in the transformer network, respectively.
The rest follow the notations in the main paper.

B. Experiment Details

B.1. Dataset

We use AMASS [7] to train our model. AMASS dataset
is a large-scale dataset which contains SMPL parameters of
more than 20 different datasets, including CMU dataset [4].
Since we test ReMP on the synthetic CMU dataset, we use
the rest to train the motion prior and also the reusing part.
Our motion prior learns the motion within 40 frames at 10
fps, so we split the sequence which is longer than 8 sec-
onds into several pieces and drop the sequence shorter than

4 seconds to make each sequence to be minimum 4 seconds
long. Therefore, the number of sequence we used to train
our model is 17,240 and the number of sequence in the syn-
thetic CMU dataset is 2,962.

B.2. Baselines

We use the same baselines in point cloud input scenarios
for both depth images or LiDAR scans. VoteHMR [5] ad-
dresses challenges from occlusion and measurement noise
in single-view point cloud measurements by segmenting the
input point cloud into parts classified as different joints. Ad-
ditionally, it requires point segmentation for training, intro-
ducing dependencies that our method does not require. Zuo
et al. [12] reconstruct human body mesh surfaces from point
cloud inputs. It first regresses parameters with a neural net-
work and then refine them through optimization employing
probabilistic self-supervised loss functions. The optimiza-
tion step enhances robustness to outliers but incurs signifi-
cant computational overhead. Both methods estimate pose
parameters for individual frames, lacking temporal coher-
ence. In contrast, Jang et al. [3] concurrently regress pa-
rameters for a temporal sequence, leveraging temporal in-
formation for more accurate and smooth motion. However,
it does not employ efficient encoding schemes and cannot
be applied to different sensor modalities.

DIP-IMU [2] is the first deep learning-based method for
human pose estimation from IMU inputs, using a bidirec-
tional RNN architecture to estimate pose parameters, but
lacks the ability to estimate root translation. TransPose [10]
and PIP [9] enhance results by incorporating physical con-
straints to recover human motion, which enables root trans-
lation estimation. TransPose estimates foot-ground con-
tact probability and root joint velocity, while PIP includes
a physics-aware motion optimizer that refines motion us-
ing a torque-controlled floating-base simulated character
model and a proportional-derivative (PD) controller for bet-
ter tracking accuracy and physical plausibility. Every IMU
baseline excludes shape parameter estimation, as the IMU
sensor input does not contain an information about body
shape. Therefore, we also use ground truth shape parameter
for the experiments on IMU sensors.

C. Additional Results
We provide additional results of every experiment we

conducted with the supplementary video. Since we focus
on the motion, videos show the result more effectively, of-
fering better views to compare with the baselines.
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