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In the following sections, we provide details about the
composition function fc along with additional quantitative
and qualitative results.

6. Composition Function Architecture
As mentioned in Section 3, we use the Combiner ar-

chitecture [3] as the composition operation fc in our pre-
training strategy. The Combiner architecture is illustrated
visually and through pseudocode in Figs. 8 and 9 respec-
tively. In brief, textual and visual features are first linearly
projected, followed by a ReLU activation and then concate-
nated together. This concatenated representation is used in
two ways: (i) it is transformed by another series of non-
linear projections to contribute directly to the output, and
(ii) it is used to determine coefficients that control the influ-
ence of the original textual and visual features on the output.

Figure 8. Overview of the Combiner architecture [3].

t_f = Dropout(Relu(Linear(txt_feat)))
i_f = Dropout(Relu(Linear(img_feat)))
c_f = Concat((t_f, i_f), dim=-1)
F = Linear(Dropout(Relu(Linear(c_f)))

)
D = Sigmoid(Linear(Dropout(ReLU(

Linear(c_f)))))
out = D*txt_feat + (1 - D)*img_feat + F
out = L2_normalize(out, dim=-1)

Figure 9. Pytorch-like pseudocode for the Combiner architec-
ture [3]. Here, D denotes the learned coefficient to dynamically
modulate the contribution of image and text features in the output.

Specifically, the concatenated features are passed
through learned projections with ReLU activations and a

sigmoid output layer to learn a coefficient D ∈ [0, 1]. The
final output is then determined as a weighted combination
of the projected concatenated features along with the origi-
nal textual features (weighted by D) and original visual fea-
tures (weighted by 1−D). This ensures that the Combiner
output remains in the same space as the contrastively-paired
image and text encodings, while enabling dynamic control
over the influence of each modality.

7. Results on CIRCO Dataset
In Table 4, we present results on CIRCO’s test set [2].

The CIRCO dataset consists of real-world images from
the COCO 2017 unlabelled image set. We note that this
set of images used in CIRCO has no intersection with the
MSCOCO images used in our pre-training strategy. Fol-
lowing [2], we present Recall@K and mAP metrics on
CIRCO. The Recall@K metric evaluates using a single
ground truth per sample whereas mAP is computed using
multiple ground truths per test example. With respect to
published approaches, SCOT performs significantly better,
with our best performing model providing a 3.75% gain
over SEARLE on Recall@5 and 1.56% gain on mAP@K.
We also note that the choice of backbone has a large influ-
ence on the relative performance of SCOT and SEARLE.
While SEARLE does marginally better than SCOT when
both use CLIP B/32, when using CLIP L/14, SCOT per-
forms on par with SEARLE. Most importantly, SCOT out-
performs SEARLE by a margin of 2-3% in mAP@K when
using the BLIP backbone. This is in line with our previous
results and in-depth analysis on performance across back-
bones that was presented in Section 4.4.

We include the results on CIRCO in this appendix in-
stead of the main paper due to space constraints. In the main
paper, we present results on CIRR and FashionIQ which al-
most all prior works compare against, allowing for more
points of comparison. While CIRCO involves more care-
ful labeling than CIRR, the distribution of images in both
datasets are similar as they are both open-world composi-
tional retrieval datasets.

8. Extended Quantitative Comparison
The state-of-the-art comparison in Section 4 is predomi-

nantly confined to recent work that has been formally pub-
lished. One reason for this is that recent preprints have not
yet been peer reviewed, leaving their quantitative results
subject to change. However, recognizing the importance
of a broader comparison with concurrent work in composi-



Backbone Method Recall@K mAP@K

K = 5 10 25 50 K = 5 10 25 50

CLIP B/32

Image-only 3.88 6.63 14.13 22.00 1.34 1.60 2.12 2.41
Text-only 4.75 6.63 9.50 13.50 2.56 2.67 2.98 3.18
Image+Text 8.25 14.13 25.50 34.75 2.65 3.25 4.14 4.54
Captioning 10.25 14.33 21.38 29.00 5.48 5.77 6.44 6.85
PALAVRA [5] 12.63 20.63 32.00 41.75 4.61 5.32 6.33 6.80
SEARLE-OTI [2] 16.88 25.00 37.00 46.38 7.14 7.83 8.99 9.60
SEARLE [2] 19.75 28.00 39.50 50.63 9.35 9.94 11.13 11.84
SCOT (Ours) 17.25 25.75 39.62 50.38 7.58 8.24 9.46 10.14

CLIP L/14

Text Only 5.38 7.25 12.50 18.38 3.01 3.18 3.68 3.93
Image Only 5.75 12.00 20.25 30.12 1.80 2.44 3.05 3.46
Image+Text 14.50 21.75 36.12 46.00 3.92 4.79 5.93 6.48
Pic2Word [29] 16.13 24.38 37.25 46.50 8.72 9.51 10.64 11.29
SEARLE-XL-OTI [2] 22.75 32.00 45.13 58.00 10.18 11.03 12.72 13.67
SEARLE-XL [2] 23.50 32.63 45.25 55.63 11.68 12.73 14.33 15.12
SCOT (Ours) 23.62 34.50 46.25 56.25 10.74 11.95 13.62 14.46

BLIP

Text Only 9.12 13.50 20.50 27.50 5.35 5.74 6.49 6.87
Image Only 6.38 11.88 20.50 29.25 1.87 2.46 3.20 3.36
Image+Text 7.88 14.25 24.88 33.38 2.33 3.18 4.00 4.47
Pic2Word† [29] - - - - 8.69 9.36 10.40 10.99
SEARLE† [2] - - - - 10.65 11.34 12.40 13.02
SCOT (Ours) 26.75 38.62 54.5 64.88 12.45 13.58 15.41 16.25

BLIP-2

Text Only 8.12 13.25 22.62 31.87 2.24 2.88 3.71 4.23
Image Only 5.00 7.38 13.88 19.62 3.07 3.22 3.80 4.13
Image+Text 21.62 33.62 47.88 63.50 8.39 9.66 11.31 12.22
SCOT (Ours) 27.25 37.88 54.12 64.88 13.24 14.24 16.05 17.05

Table 4. Results on CIRCO. Zero-shot results on the CIRCO test set with Recall@K and mAP@K metrics. †Denotes results for
Pic2Word and SEARLE with the BLIP backbone, which were taken from the results section of a recent preprint.6

tional image retrieval, we include an expanded comparison
here, which covers both published work and unpublished
preprints. Some very recent preprints were not included
among the references in the main paper, corresponding to
the approaches named LinCIR4, CoVR5, ISA6 and GRB7,
whose results are included within Tables 5 and 6.

Retrieval metrics on the FashionIQ dataset [37] are
presented in Table 5. The concurrent LinCIR approach
achieves the best overall performance by a significant mar-
gin when using the CLIP G/14 backbone. At the same time,
its performance using the CLIP L/14 backbone drops signif-
icantly, falling behind that of other approaches. Thus, much
like SCOT, LinCIR seems to be dependent on the choice of
backbone. LinCIR is an inversion-based approach, which
uses a projection model ϕ to map image embeddings into

4Gu, G., Chun, S., Kim, W., Kang, Y., Yun, S.: Language-only Ef-
ficient Training of Zero-shot Composed Image Retrieval. arXiv preprint
arXiv:2312.01998 (2023).

5Ventura, L., Yang, A., Schmid, C., Varol, G.: CoVR: Learning
composed video retrieval from web video captions. arXiv preprint
arXiv:2308.14746 (2023).

6Du, Y., Wang, M., Zhou, W., Hui, S., Li, H.: Image2Sentence
based Asymmetrical Zero-shot Composed Image Retrieval. arXiv preprint
arXiv:2403.01431 (2024).

7Sun, S., Ye, F., Gong, S.: Training-free Zero-shot Composed Image
Retrieval with Local Concept Reranking. arXiv preprint arXiv:2312.08924
(2023).

text token embeddings.8 Those token embeddings are then
combined with the token embeddings corresponding to the
input modification text, and then passed on to the text en-
coder, whose output will be a composed embedding that
can be used for retrieval. LinCIR proposes an efficient pro-
cedure to train the projection model ϕ by using solely text
embeddings. At training time, the model’s input, which
would normally be a reference image embedding, is instead
replaced by a reference caption embedding, which results
in their efficiency gains. By virtue of using caption em-
beddings as replacements for image embeddings, LinCIR
becomes dependent on backbones with strong image-text
alignment.

As observed in Tables 5 and 6, while LinCIR shows com-
mendable performance on FashionIQ, its performance on
CIRR is lower than SCOT BLIP B/16 and SCOT BLIP-2.
Furthermore, it is noteworthy that LinCIR uses 5.5M cap-
tions, in contrast to the 290K captions used by SCOT. Sim-
ilar to Pic2Word [29], LinCIR4 is a textual inversion-based
approach and does not allow fine-tuning backbones nor fa-
cilitate the potential for early fusion. In contrast, SCOT per-
formance can be further improved by finetuning the back-
bones during training as well as performing early fusion of

8See Section 2 for references to other inversion-based methods and re-
lated discussion.



Backbone Method Average Dress Shirt Top/Tee

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

CLIP B/32

Image-Only 5.88 13.19 6.96 14.08 4.46 11.89 6.22 13.61
Text-Only 18.41 36.28 14.92 33.81 19.77 34.69 20.55 40.33
Image+Text 13.36 27.51 12.44 28.55 12.61 24.82 15.04 29.16
PALAVRA [5] 19.76 37.25 17.25 35.94 21.49 37.05 20.55 38.76
SEARLE [2] 22.89 42.53 18.54 39.51 24.44 41.61 18.54 39.51
SEARLE-OTI [2] 22.44 42.34 17.85 39.91 25.37 41.32 24.12 45.79
TransAgg [23] 23.91 44.68 19.44 42.04 25.37 42.69 26.93 49.31
TransAggFT [23] 25.15 46.10 20.58 43.28 27.48 46.52 27.38 48.50
*CIReVL [16] 28.29 49.35 25.29 46.36 28.36 47.84 31.21 53.85
*Chen and Lai [4] 31.31 53.24 25.71 47.81 33.36 53.47 34.87 58.44
SCOT (Ours) 24.14 43.44 19.73 41.24 25.51 42.93 27.18 46.14

CLIP L/14

Image-Only 7.97 17.43 5.25 13.63 10.54 20.65 8.10 18.01
Text-Only 19.01 35.26 15.22 33.01 19.82 33.31 21.87 39.46
Image+Text 18.12 33.17 14.27 31.33 19.13 32.28 20.95 35.90
Pic2Word [29] 24.7 43.7 20.0 40.2 26.2 43.6 27.9 47.4
SEARLE-XL [2] 25.56 46.23 20.48 43.13 26.89 45.58 29.32 49.97
SEARLE-XL-OTI [2] 27.61 47.90 21.57 44.47 30.37 47.49 30.90 51.76
TransAgg [23] 28.57 48.29 23.85 44.57 29.54 47.79 32.33 52.52
TransAggFT [23] 32.63 53.65 27.71 49.68 34.79 53.39 35.39 57.88
*Context-I2W [33] 27.8 48.9 23.1 45.3 29.7 48.6 30.6 52.9
*CIReVL [16] 28.55 48.57 24.79 44.76 29.49 47.40 31.36 53.65
*Chen and Lai [4] 35.39 . . . . . .57.44 28.11 51.12 38.63 . . . . . .58.51 39.42 . . . . . .62.68
*CompoDiff [12] 37.36 50.85 33.91 47.85 38.10 52.48 40.07 52.22
*LinCIR4 26.28 46.49 20.92 42.44 29.10 46.81 28.81 50.18
SCOT (Ours) 28.27 47.44 23.69 45.06 29.09 47.01 32.02 50.33

CLIP G/14
*CIReVL [16] 32.19 52.36 27.07 49.53 33.71 51.42 35.80 56.14
*CompoDiff [12] 39.02 51.71 37.78 49.10 . . . . . .41.31 55.17 44.26 56.41
*LinCIR4 45.11 65.69 38.08 60.88 46.76 65.11 50.48 71.09

BLIP B/16

Image-Only 6.65 15.40 5.05 12.19 7.55 17.76 7.34 16.26
Text-Only 24.01 42.73 20.03 39.96 24.63 41.02 27.38 47.22
Image+Text 8.06 18.16 6.14 19.78 9.37 19.87 8.66 19.78
Pic2Word6 [29] 25.99 46.00 21.35 42.68 27.51 46.01 29.12 49.33
SEARLE6 [2] 27.62 47.56 22.11 41.79 29.72 48.53 31.03 52.37
TransAgg [23] 26.95 46.10 21.67 41.89 28.07 45.63 31.11 50.79
TransAggFT [23] 34.64 55.72 31.28 . . . . . .52.75 34.84 53.93 37.79 60.48
*ISA6 29.79 49.19 24.69 43.88 30.79 50.05 33.91 53.65
*ISA Eff-Net B26 29.60 49.54 25.33 46.26 30.03 48.58 33.45 53.80
*ISA Eff-ViT M26 29.35 49.50 25.48 45.51 29.64 48.68 32.94 54.31
SCOT (Ours) 30.68 51.33 26.42 49.23 30.91 49.65 34.72 55.12

BLIP L/16 *CoVR5 27.70 44.63 21.95 39.05 30.37 46.12 30.78 48.73

BLIP-2

Image-Only 7.53 17.93 4.21 11.89 10.59 23.51 7.81 18.41
Text Only 24.68 43.59 20.77 41.64 25.95 42.83 27.33 46.31
Image+Text 29.21 50.05 23.30 45.61 32.82 53.09 31.51 51.45
*GRB7 30.74 51.44 24.14 45.56 34.54 55.15 33.55 53.60
SCOT (Ours) . . . . . .38.45 60.03 . . . . . .32.78 55.91 41.42 61.09 . . . . . .41.15 63.10

Table 5. Expanded results on FashionIQ. Zero-shot results on the FashionIQ validation set, including results from concurrent work.
The best, second-best and . . . . . . . . . . .third-best results are correspondingly highlighted. SCOT consistently achieves a top-3 result on every metric.
Methods using CLIP G/14 adopt the OpenCLIP implementation. TransAggFT denotes TransAgg with backbone fine-tuning. *Methods
preceded by an asterisk are from recent preprints.

visual and textual features. We also wish to emphasize the
complementary aspects of LinCIR and SCOT. The signifi-
cant gains of LinCIR can be credited to their approach of
incorporating random noise into textual embeddings during
training, so that the resulting noisy text embedding distri-
bution better resembles that of image embeddings. Given
that SCOT employs textual embeddings as a substitute for
visual embeddings in its training targets, applying LinCIR’s

noise addition strategy to our textual representations during
training could potentially enhance ZS-CIR performance.

On FashionIQ (Table 5), LinCIR is followed by SCOT
and CompoDiff [12]. While CompoDiff achieves strong
results on Recall@10, SCOT significantly surpasses Com-
poDiff in Recall@50 metrics, both within categories and
on average. Notably, the training procedure for CompoD-
iff utilizes a substantially larger dataset including 2 billion



Backbone Method Recall@K Recallsubset@K

K = 1 K = 5 K = 10 K = 50 K = 1 K = 2 K = 3

CLIP B/32

Image-only 6.94 22.94 33.71 59.18 21.06 41.01 60.34
Text-only 21.16 45.35 57.40 81.06 62.26 81.08 90.75
Image+Text 10.46 32.41 46.39 75.11 30.09 54.24 73.20
PALAVRA [5] 16.62 43.49 58.51 83.95 41.61 65.30 80.94
SEARLE [2] 24.00 53.42 66.82 89.78 54.89 76.60 88.19
SEARLE-OTI [2] 24.27 53.25 66.10 88.84 54.10 75.81 87.33
TransAgg [23] 24.46 53.61 67.54 89.81 57.81 78.17 89.54
TransAggFT [23] 29.30 60.48 73.25 92.31 63.57 82.31 91.95
*CIReVL [16] 23.94 52.51 66.0 86.95 60.17 80.05 90.19
*Chen and Lai [4] 18.80 46.07 60.75 86.41 44.29 68.10 83.42
SCOT (Ours) 22.80 53.18 66.22 89.64 53.25 75.45 88.31

CLIP L/14

Image-only 7.47 23.88 34.07 57.57 20.87 41.95 61.13
Text-only 22.00 45.79 57.57 79.59 61.71 80.26 90.43
Image+Text 10.55 32.70 45.71 74.26 31.06 55.69 73.93
Pic2Word [29] 23.9 51.7 65.3 87.8 - - -
SEARLE-XL [2] 24.24 52.48 66.29 88.84 53.76 75.01 88.19
SEARLE-XL-OTI [2] 24.87 52.31 66.29 88.58 53.80 74.31 86.94
TransAgg [23] 25.04 53.98 67.59 88.94 55.33 76.82 88.94
TransAggFT [23] 33.04 64.39 76.27 93.45 63.37 82.27 92.22
*Context-I2W [33] 25.6 55.1 68.5 89.8 - - -
*CIReVL [16] 24.55 52.31 64.92 86.34 59.54 79.88 89.69
*Chen and Lai [4] 25.52 54.58 67.59 88.70 55.64 77.54 89.47
*CompoDiff [12] 19.37 53.81 72.02 90.85 59.13 78.81 89.33
*LinCIR4 25.04 53.25 66.68 - 57.11 77.37 88.89
SCOT (Ours) 24.36 53.52 67.37 89.35 51.47 74.24 87.90

CLIP G/14
*CIReVL [16] 34.65 64.29 75.06 91.66 67.95 84.87 93.21
*CompoDiff [12] 26.71 55.14 74.52 92.01 64.54 82.39 91.81
*LinCIR4 35.25 64.72 76.05 - 63.35 82.22 91.98

BLIP B/16

Image-only 7.23 25.78 37.35 62.34 20.60 40.96 61.35
Text-only 34.19 61.68 71.74 87.83 . . . . . .72.34 . . . . . .87.97 . . . . . .94.79
Image+Text 8.24 28.96 41.23 68.07 23.64 45.35 66.29
Pic2Word6 [29] 26.70 53.16 64.10 84.36 - - -
SEARLE6 [2] 29.27 54.86 66.57 86.16 - - -
TransAgg [23] 34.89 64.75 76.24 92.22 66.34 83.76 92.92
TransAggFT [23] 37.18 67.21 77.92 93.43 69.34 85.68 93.62
*ISA6 29.68 58.72 70.79 90.33 - - -
*ISA Eff-Net B26 30.84 61.06 73.57 92.43 - - -
*ISA Eff-ViT M26 29.63 58.99 71.37 91.47 - - -
SCOT (Ours) 36.31 . . . . . .66.19 77.37 92.96 64.73 83.20 92.15

BLIP L/16 *CoVR 38.48 66.70 . . . . . . .77.25 91.47 69.28 83.76 91.11

BLIP-2

Image-only 7.59 24.43 35.56 61.42 20.74 40.67 61.08
Text-only 33.52 61.50 71.35 88.31 72.53 88.02 94.87
Image+Text 19.69 49.98 64.39 90.01 45.69 71.18 85.83
*GRB+LCR7 30.92 56.99 68.58 85.28 66.67 78.68 82.60
SCOT (Ours) . . . . . .36.82 64.34 74.48 . . . . . . .93.42 75.73 88.70 94.84

Table 6. Expanded results on CIRR. Zero-shot results on the CIRR test set, including results from concurrent work. The best, second-best
and . . . . . . . . . . .third-best results are correspondingly highlighted. SCOT is the only approach that consistently achieves a top-3 result on every metric.
Methods using CLIP G/14 adopt the OpenCLIP implementation. TransAggFT denotes TransAgg with backbone fine-tuning. *Methods
preceded by an asterisk are from recent preprints.

captioned images from LAION and 18 million syntheti-
cally generated triplets; in contrast, SCOT is trained on only
290K samples. The synthetic image-text-image triplets gen-
erated by CompoDiff’s approach are complementary to our
proposed use of image-text-text triplets, and we hypothe-
size that a combination of both pretraining schemes may
yield stronger results than each.

Table 6 presents different recall metrics over the CIRR

dataset [24]. We observe that in subset evaluations, SCOT
significantly outperforms all prior and concurrent ZS-CIR
methods, while being competitive with the best supervised
approach from Table 2. On the full set recall metrics,
TransAggFT presents the best results among ZS-CIR meth-
ods. This version of TransAgg fine-tunes its BLIP back-
bone during training. Note that when using the same back-
bone, SCOT presents better performance than the version



of TransAgg which does not fine-tune its backbone. Thus,
it would be reasonable to expect that SCOT with fine-
tuned backbones would outperform TransAggFT, resulting
in state-of-the-art performance on the full set recall metrics
as well.

9. Ablations of Encoder Backbones

In Section 4.4, an ablation was conducted to examine the
effect of varying the contrastively-trained encoders on zero-
shot compositional retrieval performance on the FashionIQ
and CIRR datasets. Here, we present additional observa-
tions around the performance of SCOT relative to the sim-
ple baselines (Image-Only, Text-Only, and Image+Text) as
the backbones are changed.

Figure 10. Additional qualitative retrieval results on Fash-
ionIQ [37] validation set. A green box indicates the correctly
retrieved image. Here we present the closest (Rank 1) matches for
all methods.

Table 1 provides comprehensive results on the FashionIQ
dataset when the image-text encoder backbone is varied, in-
cluding retrieval performance across the Dress, Shirt, and
Top/Tee categories. We observe that performance is fairly
correlated across the categories, with BLIP-2 encoders im-
proving dramatically over CLIP and BLIP. Interestingly,
we note that Text-Only performance significantly exceeds
that of Image+Text for both CLIP B/32 and BLIP encoders,
while the gap shrinks for the larger CLIP L/14 model and
reverses with BLIP-2. We hypothesize that the performance
of Text-Only relative to Image+Text may reflect the quality
of embeddings produced by pretrained image-text encoders
for a given dataset.

Table 2 contains results on the CIRR dataset, also with
varied image-text encoders. We observe that, in subset
evaluations on CIRR, when models use CLIP B/32, they
demonstrate marginally better performance than when us-
ing CLIP L/14; however, this gets reversed in full-set eval-
uations. The subset evaluations are also significantly dom-
inated by Text-Only retrieval for the CLIP variants and for
BLIP, unlike what happens in the full-set evaluations. Some
CIRR triplets are known to have target images which are
fully described by the modification text—rendering the ref-
erence image irrelevant—which partly explains these re-
sults, as also previously observed by Baldrati et al. [2]. Us-
ing the stronger BLIP-2 encoder improves the performance
of the Text-Only retrieval baseline, while at the same time
leading to larger gains when using SCOT.

10. Additional Qualitative Results
Qualitative retrieval results on samples from FashionIQ

are presented in Fig. 10. The closest (Rank 1) match
is shown for all the presented methods. The examples
highlight the central challenge of compositional retrieval,
namely the merging of visual information from the origi-
nal image with the modification text to retrieve the relevant
target image. For example, in row one, text-only retrieval
yields mustard-colored long shoes, the simple image+text
method retrieves the original image, and Pic2Word retrieves
a similar yet shorter mustard-colored dress. In contrast,
SCOT successfully retrieves a long mustard-colored dress
with a neckline similar to that of the original image.

In Fig. 11, we present some Recall@1 failure cases
where SCOT did not retrieve the ground truth image as the
closest match. We present the top four samples retrieved by
SCOT and highlight the annotated ground truth sample. We
often see that the top result retrieved by SCOT is also a rel-
evant product that matches the reference image with the de-
scribed modification applied. However, because the anno-
tations are not exhaustive and only one image is labeled as
the ground truth, the retrieved result is not judged as correct.
This can be clearly observed in the second row: whereas the
ground-truth image featuring a black t-shirt with a Godzilla



Figure 11. Additional qualitative retrieval results on the FashionIQ [37] validation set. Samples where SCOT failed to retrieve the
annotated ground truth (green box) as the closest match.

graphic shows up in the third position, the first two retrieved
images are also black t-shirts with Godzilla graphics on
them and could thus also have reasonably been judged as
correct retrievals.

11. Visualization of Composed Embeddings
In Section 3, we present a method for learning a com-

posed image embedding Vc which is utilized for retrieval
at inference time. In Fig. 12, we attempt to visualize these
latent composed image embeddings Vc in visual space by
using the CLIP L/14 backbone along with unCLIP.9

The visualization illustrates how SCOT successfully re-
tains the essential elements of the original image while ap-
plying the necessary modifications to generate the com-
posed representation. The second row of the visualization
provides a notable example: the modification text explicitly
requests the replacement of birds for rabbits, and the re-
sulting composed image contains not only rabbits but also
additional elements—a man and cages–which were not in
the modification text. These elements appear to be inferred
from the original image and then incorporated by the model
into the resulting composed embedding.

Similarly, in the first row the blue and white costume
was likely drawn from “Alice costume” in the modification
text, but the presence of multiple women and the dancing
poses were likely inferred from the original image. In the
fourth row, the deer were mentioned in the modification text

9We use the karlo-v1-alpha checkpoint for unCLIP, which reimple-
ments Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hier-
archical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125 (2022).

Figure 12. UnCLIP visualizations of the composed image em-
bedding Vc (using CLIP ViT-L/14) for selected samples.

https://huggingface.co/kakaobrain/karlo-v1-alpha


but the wide shot of grassland scenery was likely inferred
from the image. The orientation of the vehicle and tables in
the third and fifth images respectively appear to have been
drawn from the images as well. These examples underscore
the model’s ability to preserve contextually relevant infor-
mation while making specific alterations as per the given
modification text.
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