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1. Object Attribute Disentanglement
Compositional learning is characterized by the model

ability to decompose and compose object primitives and
states. In which Object Attribute Disentanglement (OAD)
is a vital component to facilitate generalization on unseen
pairs. VisProd [6], KG-SP [3] separate attribute and object
embedders and TMN [9] utilize word embedding to decom-
pose image features while, HiDC [12] compose novel pairs
using word embeddings in order to facilitate disentangle-
ment. Saini et al. [10] deploys a visual feature disentan-
glement of attributes and objects to regularize the common
embedding space. Proposed method contains a novel hybrid
disentanglement procedure encompassing [10] and [3].

2. Feasibility Score Calculation for Open-
World Setting

Feasibility score is determined by assessing the co-
herence of attribute-object compositions within real-world
contexts. For example, while ’small cat’ exhibits coher-
ence, ’spilled cat’ lacks semantic coherence. This aims to
ascertain the viability of a given attribute-object pair within
real-world contexts. In order to compute the feasibility
scores for each composition, we deploy a similar proce-
dure as KG-SP [3]. First, we aggregate text embedding for
each word in the vocabulary by utilizing GloVe [8]. Subse-
quently, we find similarity between given object and avail-
able objects and computing similarity scores for attributes
as well. Lastly, for each composition, a feasibility score,
ρGlove(a, o) ∈ R is calculated by taking the average of sim-
ilarity scores between respective attribute and object.

ρo(a, o) = max
ô∈O

ϕ(o) · ϕ(ô)
||ϕ(o)|| · ||ϕ(ô)||

(1)

ρGlove(a, o) =
ρo(a, o) + ρa(a, o)

2
(2)

Where, ρo(a, o) is the maximum similarity score between
object and other objects in O. ϕ(·) is the GloVe embedding

function. In order to induce more robustness to the filter-
ing, we compute ConceptNet numberbatch [11] embedding
based feasibility scores similar to that of Glove. For each
pair, maximum of two feasibility scores set as the final fea-
sibility score ρ(a, o) ∈ R.

ρ(a, o) = max
o∈O,a∈A

(ρGlove(a, o), ρConceptnet(a, o)) (3)

fpair = argmax
y,ρ(a,o)>T

pθ(y|x) (4)

Where, ρ(a, o) is the feasibility score for composition
(a, o). Finally, we filter out the infeasible compositions by
choosing the compositions with higher scores than a empir-
ically settled threshold value which is calibrated on training
set. Resulting a binary mask fpair ∈ R|A|·|O|.

2.1. Feasibility Results

We examine the least and most feasible attribute-object
combinations computed within the MIT-States validation
set. Subsequently, we compare the associated labels and
corresponding predictions. Column one displays corre-
sponding image, with the ground-truth label positioned at
the top (GT), while columns two and three shows attribute
and object predictions. Furthermore, fourth column con-
sists of incorrect predictions. Last column indicate the final
pair prediction. For each cell, three columns illustrate the
top-3 results for attributes, objects, and compositions. We
denote the predictions matching the ground truth are high-
lighted in blue. From Table 1 it is evident that, compositions
with lower feasibility scores are susceptible to masking out
thereby introducing an induced bias within the network and
consequently resulting in incorrect predictions. In contrast,
Table 2 illustrates the model’s capability to accurately iden-
tify labels for compositions with higher feasibility scores.
Consequently, this highlights the model’s ability to discern
such compositions without the risk of masking out. There-
fore, above results prompt us to explore novel methodolo-
gies to compute more robust and scalable feasibility scores.
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Table 1. Qualitative analysis on effect of feasibility mask. Illustrate the five lowest feasibility scores in validation set. Predictions matching
the ground truth are highlighted in blue.

Feasibility
Score for GT Attribute Predictions Object Predictions Pair Prediction Before Binary

Mask Pair Predictions

GT: Dull Bronze

Brushed Bronze Brushed Bronze Brushed Bronze

0. Straight Steel Brushed Steel Brushed Steel

Rusty Brass Straight Bronze Straight Bronze

GT: Full Bathroom

Large Bathroom Large Bathroom Large Bathroom

0.0842 Empty Room Empty Bathroom Empty Bathroom

Tiny Shower Tiny Bathroom Tiny Bathroom

GT: Blunt Blade

Large Knife Large Knife Large Knife

0.1257 Small Blade Small Knife Small Knife

Straight Handle Straight Knife Straight Knife

GT: Standing Tower

Modern Tower Standing Tower Modern Tower

0.1363 Standing Building Modern Tower Ancient Tower

New Church Ancient Tower New Tower

GT: Fallen Tower

Steaming Lake Steaming Lake Steaming Lake

0.1479 Dry Mud Steaming Water Steaming Water

Barren Farm Dry Lake Dry Lake

Table 2. Qualitative analysis on effect of feasibility mask. Illustrate the five highest feasibility scores in validation set. Predictions matching
the ground truth are highlighted in blue.

Feasibility
Score for GT Attribute Predictions Object Predictions Pair Prediction Before Binary

Mask Pair Predictions

GT: Small Bathroom

Small Bathroom Small Bathroom Small Bathroom

0.9968 Tiny Shower Tiny Bathroom Tiny Bathroom

Clean Tile Clean Bathroom Clean Bathroom

GT: Small Kitchen

Small Kitchen Small Kitchen Small Kitchen

0.9968 Tiny Cabinet Tiny Kitchen Tiny Kitchen

Large Room Large Kitchen Large Kitchen

GT: Diced Meat

Diced Meat Diced Meat Diced Meat

1. Sliced Beef Diced Beef Diced Beef

Raw Chicken Sliced Meat Sliced Meat

GT: Frozen Beef

Frozen Beef Frozen Beef Frozen Beef

1. Thawed Meat Frozen Meat Frozen Meat

Raw Chicken Thawed Beef Thawed Beef

GT: Sliced Beef

Sliced Beef Sliced Beef Sliced Beef

1. Chipped Plant Chipped Beef Chipped Beef

Diced Leaf Cooked Beef Cooked Beef

Such that it would encompass a right-skewed distribution to
accurately represent viable compositions.

3. Hyper Parameter Tuning
For experiments, we found the best hyperparameters by

random search and choose the best hyperparameters for
each dataset based on best AUC on the validation split.
We reduce the number of epochs for C-GQA [5] and MIT-
States [2] since the model tend to converge earlier due the
low number of training samples. We increase the number of
epochs for VAW-CZSL [10] to compensate for high number
of training samples. Table 6 shows hyperparameters used to
train the proposed model on all datasets.

Table 5. The effect of number of frozen layers in transformer en-
coder for MIT-States.

Number of frozen layers S U HM AUC
0 frozen layers 36.3 12.5 12.4 3.1
2 frozen layers 35.3 12.4 12.3 3.0
4 frozen layers 35.0 12.5 12.2 2.9
6 frozen layers 35.4 12.0 11.8 2.9
8 frozen layers 35.0 12.3 12.1 2.9
11 frozen layers 31.6 11.8 11.0 2.4

Furthermore, we experiment the effect of number of
frozen layers in transformer encoder. As shown in Table 5,



Table 6. Hyperparameter tuning on MIT-States, C-GQA and VAW-CZSL

MIT-States [2] C-GQA [5] VAW-CZSL [10]
LR for TopK Selection 1e-6 1e-6 1e-6
LR for Transformer Encoder 3.5e-5 3.5e-5 3.5e-5
LR for Sparse Linear Compositor 3.6e-5 3.6e-5 3.5e-5
Weight Decay 0.001 0.001 0.001
K for TopK Selection 3 3 3
Batch Size 32 64 64
Epochs 20 30 85
GPU 1080Ti RTXA4000 RTXA4000

Table 7. Closed world performance on MIT-States, C-GQA and VAW-CZSL. As evaluation matrices we refer to AUC with seen and unseen
accuracies and HM. Xvit denots the networks with transformer based image encoders.

Method MIT-States C-GQA VAW-CZSL

S U HM AUC@1 S U HM AUC@1 S U HM AUC@3

CompCos [5] 26.9 24.5 16.9 4.8 28.1 11.8 12.1 2.6 23.9 18.0 14.2 3.2

CGE [7] 28.9 25.0 18.1 5.3 27.5 11.7 11.9 2.5 23.4 16.8 13.0 2.9

OADIs [10] 31.1 25.6 18.9 5.9 - - - - 24.9 18.7 15.2 3.6

CoT [4] 30.8 26.8 19.6 6.2 33.1 16.6 16.6 4.5 24.6 19.1 15.7 3.8

CGEvit [7] 39.7 31.6 24.8 9.7 38.0 17.1 18.5 5.4 30.1 25.7 20.1 6.2

OADIsvit [10] 39.2 32.1 25.2 10.1 38.3 19.8 20.1 7.0 31.3 26.1 20.4 6.5

CoTvit [4] 39.5 33.0 25.8 10.5 39.2 22.7 22.1 7.4 32.9 28.2 21.7 7.2

Oursvit 36.5 30.9 22.1 8.2 36.1 18.7 19.3 5.8 30.0 26.4 20.2 6.2

we can observe a decrement in all four evaluation matrices
when the number of frozen layers increases. This may be
attributed to the inherent limitation of the ViT [1] encoder,
which was not pre-trained to process multi modal inputs.

4. Closed World Testing

In order to measure the flexibility of proposed model, we
conduct experiments on closed world setting. During the
evaluation we adjust the feasibility mask to represent total
number seen and unseen pairs present in the dataset. This
transitions the proposed model from open world setting to
closed world setting.

We compute seen, unseen accuracy and HM for all three
datasets and similar to CoT [4] and OADIs [10], we com-
pute the AUC with top 1 for MIT-States, C-GQA and AUC
with top 3 for VAW-CZSL. In particular, despite an in-
crease in the total number of compositions in output space,
proposed model was able to attain a narrower the gap be-
tween itself and closed-world models, thereby showcasing
the model’s inherent flexibility.

5. Identifying Multiple Object Instances

In Table 8, we examine the model’s capability in man-
aging multiple object instances. For column 1, model suc-
cessfully recognized both ‘bear’ and ‘forest’ while giving
priority for ‘bear’ during predictions. However in column

2, predictions are predominantly influenced by secondary
objects: ‘skateboarding’ and clothing. Thus demonstrating
the model’s capability to identify diverse set of object in-
stances.

6. Negative Societal Impact
Zero-shot learning (ZSL) is prominent research focus,

offering promising robust solutions for real-world language
and vision tasks. Enhancing the robustness of performance
assertions is pivotal as it not only showcases attainable per-
formance levels while identifing invalid solutions. Nonethe-
less, these assurances often may overlook different errors,
such as generalization gaps resulting from domain shifts or
training label inaccuracies. It is crucial to accurately inter-
pret these bounds to avoid erroneous claims or unwarranted
confidence in proposed ZSL models.



Table 8. Performance of the model in the presence of multiple object instances. Secondary object predictions are highlighted in red and
final predictions are highlighted with black boxes.

GT: Huge Bear GT: Stone Stairs

huge bear huge bear skateboardingjeans skateboarding boy

mossy dog young bear skating boy skateboarding man

young forest mossy bear black man jumping boy
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