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1. High-pass filter kernel
The proof for Proposition 1 is presented below.

Proof. Consider h(x) =
∑M

i=1 αihi(x). By utilizing the
linearity of the Fourier transform, it can be expressed in the
Fourier domain as:

H(f) =

M∑
i=1

αiHi(f) (1)

In this domain, Hi(f), representing a high-pass filtering
function, is generally observed as a non-decreasing function
gi(f) ranging from 0 to 1. A value of gi(f) = 0 signifies
complete attenuation of the frequency component f , while
gi(f) = 1 denotes no attenuation.

Given that the sum and scalar multiplication of non-
decreasing functions remain non-decreasing, H(f) is also
non-decreasing. Therefore, h(x) is identified as a high-pass
filter.

2. The kernels for high-pass filtering
We describe the kernels we used in Section 4.3. The

Sobel filter is defined as follows:

Sobelx =

1 0 −1
2 0 −2
1 0 −1,

 ,Sobely =

 1 2 1
0 0 0
−1 −2 −1

 .

(2)

The Kirsch filter is:

Kirschx =

−3 −3 5
−3 0 5
−3 −3 5,

 ,Kirschy =

 5 5 5
−3 0 −3
−3 −3 −3

 .

(3)

The Laplacian filter is:

Laplacian =

 0 −1 0
−1 4 −1
0 −1 0

 . (4)
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Figure 1. Histogram of the weights in the fusion.

3. Architecture
The detailed architecture of our model is presented in

Tables 1 to 4. For the pre-process module P , we uti-
lize residual dense blocks (RDB) [6] as the foundational
building blocks. The architectures of P0 and Pn, where
n = 1, . . . , N , differ. Greater computational resources are
allocated to P 0 due to its role in the final restoration in
RGB format, prioritizing the direct RGB input over other
features.

4. Experiments
4.1. Weights in the fusion module

To understand the importance of each input mentioned in
Eq.10 of the main paper, we visualize the weights of the first
convolution in R, which processes the concatenated inputs
from Eq.10. The results are presented in Figure 1. A larger
weight indicates that the deblurring effect is more signifi-
cantly attributed to that particular input component. We use
pi to represent the weight of the i-th representation feature.
The model fuses 224 channels, with the first 64 channels
representing the RGB input, followed by 6×16 channels for
6 different features, and finally 64 channels for the warped
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Layer Output Coefficient Generator
conv1 T × H/4 × W/4 × 3 3 × 3 × 3, stride 1
conv2 T × H/4 × W/4 × 3 3 × 3 × 3, stride 1

AvgPool 1 × 1 × 1 × 3 -
Linear 1 × 1 × 1 × 3 3 × NM

Table 1. Coefficient generator G architecture.

Layer Output Pre-process Module
Conv1 H × W × 3 5 × 5, stride 1
RDB1 H × W × 3 [3 × 3, 16, dense conv] × 4
Conv2 H/2 × W/2 × 32 5 × 5, stride 2
RDB2 H/2 × W/2 × 32 [3 × 3, 24, dense conv] × 4
Conv3 H/4 × W/4 × 64 5 × 5, stride 2

Table 2. Pre-process module P0 architecture.

Layer Output Pre-process Module
Conv1 H × W × 3 5 × 5, stride 1
RDB1 H × W × 3 [3 × 3, 16, dense conv] × 2
Conv2 H/2 × W/2 × 16 5 × 5, stride 2
RDB2 H/2 × W/2 × 16 [3 × 3, 24, dense conv] × 2
Conv3 H/4 × W/4 × 16 5 × 5, stride 2

Table 3. Pre-process module Pn, n = 1, . . . , N architecture.

Layer Output Deblurring Module
Conv1 H/4 × W/4 × 64 3 × 3, stride 1

ResBlock1 H/4 × W/4 × 64

[
3 × 3, 64
3 × 3, 64

]
× 30

Transposed conv1 H/2 × W/2 × 32 3 × 3, stride 2
Transposed conv2 H × W × 16 3 × 3, stride 2

Conv1 H × W × 3 5 × 5, stride 1

Table 4. Deblurring module D architecture.

output from the previous frame. The histogram values are
scaled with respect to the input scale to ensure that the com-
parison is meaningful. The channel for p5 represents the
spatial gradient (see k4 in Figure 14). The fusion convolu-
tion assigns more weight to the input, the spatial gradient
map, and the previous warped results, which further illus-
trates the importance of the spatial gradient in deblurring.

4.2. Visual comparison

Additional visual comparisons are provided in Figures 2
to 9. Figure 14 provides more visual examples of the gener-
ated kernels kt and the corresponding high-frequency result.
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Figure 2. Qualitative comparisons to models with a similar training memory footprint.
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Figure 3. Qualitative comparisons to models with a similar training memory footprint.
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Figure 4. Qualitative comparisons to models with a similar training memory footprint.
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Figure 5. Qualitative comparisons to models with a similar training memory footprint.
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Figure 6. Qualitative comparisons to models with a similar training memory footprint.
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Figure 7. Qualitative comparisons to models with a similar training memory footprint.
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Figure 8. Qualitative comparisons to models with a similar training memory footprint.
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Figure 9. Qualitative comparisons to models with a similar training memory footprint.
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Figure 10. Qualitative comparisons to models with a similar training memory footprint.
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Figure 11. Qualitative comparisons to models with a similar training memory footprint.
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Figure 12. Qualitative comparisons to models with a similar training memory footprint.
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Figure 13. Qualitative comparisons to models with a similar training memory footprint.
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Figure 14. Examples of learned kernels and features (please zoom in for a better view).
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