
A. Model Architecture
The overall architecture of @MODEL is a generic

encoder-decoder design as shown in main paper. We fol-
low X-Decoder [51] to adapt Focal-T [43] as image encoder
EncI and use a number of transformer layers as text en-
coder EncT. Decoder is a common Transformer [51] de-
coder structure with self- and cross-attention layers.

A.1. Formulation
First, we use image encoder EncI to extract multi-scale

features Z from input image I→RH→W→3:

Z = EncI(I) = ↑zl↓Ll=1 (1)

where zl → RHl→Wl→d and {Hl,Wl} is the size of fea-
ture map at level l and d is the feature dimension. Then,
we use the text encoder EncT to encode a task-specific
prompt into P = ↑p1, · · ·, pn↓ of length n. Afterwards,
we use the same text encoder EncT to encode a textual
label into Q

t = ↑q1t, · · ·, qnt↓ and create a latent queries
Q

l =
〈
q1

l
, · · ·, qml

〉
as inputs of decoder. All these fea-

tures are fed into @MODEL to predict the outputs:

↑Op
,O

s↓ = @Model(↑P,Z↓ ;
〈
Q

l
,Q

t
〉
), (2)

where O
p and O

s are the pixel-level outputs and token-
level semantic outputs, respectively.

A.2. Tasks
Based on the aforementioned designs, @MODEL can be

effectively employed to integrate various vision and vision-
language tasks by utilizing different input combinations.
Pixel-level Output Tasks. For these tasks, such as panop-
tic segmentation and depth estimation, there is no textual
label as input for decoder:

O
p = @Model(↑P,Z↓ ;Ql), (3)

where O
p has the same size of Ql.

Token-level Output Tasks. For OCR, captioning and
VQA, they require both latent and text queries as inputs.
Hence, Eq. (2) is adapted to:

O
s = @Model(↑P,Z↓ ;

〈
Q

l
,Q

t
〉
), (4)

where O
s correspondingly has equal size of Q

t, and no
pixel-level output are predicted. All predictions follow an
auto-regressive strategy.

B. Loss Functions
B.1. Pixel-level Output Loss
Segmentation Loss. There are two losses on the seg-
mentation corresponding to two tasks. For mask classifi-
cation, we use text encoder EncT to encode all N class

names including “background” into N text embeddings
Ecls→RN→C and take it to represent the concept. After-
ward, we take the first (m ↔ 1) latent queries and com-
pute the dot-product between these outputs and concept
embeddings to obtain an affinity matrix Scls→R(m↑1)→N

and compute Lcls=CE(Scls,ycls), with the ground-truth
class ycls. For mask prediction, we use Hungarian match-
ing [4,6] to find the matched entries of first (m↔ 1) outputs
to ground-truth annotations. Afterward, we to use binary
cross-entropy loss Lbce and dice loss Ldice to compute the
loss. Thus, the overall training loss function of panoptic
segmentation is:

Lps = ωclsLcls + ωbceLbce + ωdiceLdice, (5)

where ωcls, ωbce and ωdice are coefficient weights to control
different losses
Depth Estimation Loss. Given the prediction O

p derived
from m latent queries, we use the last (m-th) latent querie
to make depth prediction. In order to calculate the distance
between predicted output Ŷde and ground truth Yde, we
use scale-invariant log scale loss [8, 19]. The equation of
training loss is as follows:

Lde =
1

n

∑

i

di
2 ↔ 1

2
(
1

n

∑

i

di)
2
, (6)

where di = log(yi)↔ log(ŷi), yi and ŷi are ith pixel-value
of Yde and Ŷde, respectively.

B.2. Token-level Output Loss

For token-level tasks, we begin by extracting embed-
dings for all tokens in the vocabulary, which has a size of
V , from the text encoder. Using the last n semantic token-
level outputs from @MODEL, we calculate the dot prod-
uct with all token embeddings to generate an affinity ma-
trix Stoken→Rn→V . Subsequently, we compute the cross-
entropy loss Ltoken=CE(Stoken,ytoken), where ytoken

represents the ground-truth next-token id.

B.3. Multi-task Training Loss

During multi-task training, we calculate losses on the top
decoder layers for each task to guide the model to converge
faster in the early training stage and accelerate the overall
training process. The overall training loss function is:

∑

task↓{ps,de,ocr,ic,vqa}

nltask∑

i=1

ωtaskLtask, (7)

where nltask represents the number of decoder layers that
need to calculate the loss for different task, ωtask and Ltask

are loss weights and losses for different task, respectively.
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Figure 6. Comparison between subword-based tokenizer and
character-based word tokenizer in our proposed @MODEL

C. Implementation Details

C.1. Multi-task Training

Training Setting. Since the number of images in OCR
training dataset is much larger than datasets for the other
tasks, we define OCR training dataset as the major dataset
for multi-task training. It means that the total number of it-
erations is calculated based on the number of images in the
OCR dataset. The batch sizes for panoptic segmentation,
depth estimation, OCR, captioning, and VQA are 4, 4, 768,
8, and 4, respectively, to accommodate datasets of different
sizes for various tasks. The model is trained with 15 epochs
based on OCR datasets on 4 A100 (40G). The AdamW opti-
mizer is used with the initial learning rate 1e-5. A step-wise
scheduler is used to decay the learning rate by 0.1 on the
fraction [0.6, 0.8] of training steps.
Hyperparameter Choice. In @MODEL, the decoder has 7
decoder layers. Due to segmentation and OCR are the top
two scored tasks (from user study), and the OCR datasets
are very large, the amount of data for each task is unbal-
anced, we set nltask as 6, 3, 6, 3 and 3 for panoptic seg-
mentation, depth estimation, OCR, captioning and VQA,
respectively, to allow the model to focus more on segmen-
tation and OCR during training. We set loss weights ωtask

as 1, 10, 10, 2 and 2, respectively. Because the loss values

of OCR and depth estimation in the later stage of training
are very small, in order to minimize significant differences
in the loss magnitude for each task as much as possible, we
have made such a setting. And in Eq. (5), we set ωcls = 2,
ωbce = 5 and ωdice = 5 as default, following the settings of
X-Decoder.

C.2. Single-task Training

All tasks are trained with AdamW as the optimizer on 4
1080Ti (11G), except OCR. The initial learning rate is 1e-5
and reduced by 10 times after 60% and 80%.
Panoptic Segmentation. We train the model for 50 epochs.
We set the image resolution to 640↗640 and the batch size
to 4.
Depth Estimation. We train the model for 50 epochs. We
set the image resolution to 480↗640 and the batch size to
16. Note that this task is very unstable and requires care-
ful hyperparameter tuning. If you encounter training errors,
you can increase the batch size, reduce the learning rate or
training with single precision (FP32).
Optical Character Recognition. We train the model for
10 epochs on 4 A100 (40G). We set the image resolution to
64↗200 and the batch size to 1024.
Image Captioning. We train the model for 50 epochs. We
set the image resolution to 480↗640 and the batch size to
16. We use all captions for training and do not use beam
search and CIDEr optimization.
Visual Question Answering. We train the model for 30
epochs. We set the image resolution to 480↗640 and the
batch size to 16.

C.3. Character-based Tokenizer with Limited Vo-
cabulary for OCR

In our main paper, we observed that subword-based to-
kenizer with complete vocabulary hurts the performance of
OCR task. In Fig. 6, we show how to use character-based
tokenizer and much smaller limited vocabulary to perform
OCR task. Using a character-based word tokenizer to divide
the text that needs to be recognized into characters one by
one, model only needs to predict token from the limited vo-
cabulary space, and do not need to select candidate subword
from the complete vocabulary. This reduces the prediction
space and improves the accuracy of prediction.

D. User Study
D.1. Comments on Generalist Assistance Systems

By conducting the questionnaire survey, we commu-
nicated with visually impaired individuals to comprehend
the functionalities they expect a generalist assistive system
should possess. We got some thoughts like: “It should
find the door, look for stairs in an open area, read the



house/room number, read signs/plates, describe the envi-
ronment, warn me of obstacles, and can navigate the corri-
dors with a floor plan.”. Some participants also described
specific usage scenarios, “I would use navigation and ob-
stacle detection systems outside. It should warn me of ob-
stacles or describe something I’m about to encounter. For
example, if I’m navigating outside and there’s a road ahead,
then it should say if it has a roundabout or an intersection.
Or, if there is a railroad crossing, announce something sim-
ilar. It would be cool if there was an all around view. The
system says, the front of you is street and the back is a build-
ing, left is bike racks, etc. If there is a name of the store,
read it out. The most important thing is to have a general
navigation ability based on this all around view. If I then
say navigate to the store (name of the store) recognized by
this system, then it should navigate me there.”. Based on
these thoughts and comments, essential functions identified
by People with Visual Impairments (PVIs) that a generalist
assistive system should include are:
(1) Navigation and Obstacle Avoidance. A critical com-

ponent is a navigation system integrated with obstacle
detection capabilities. PVIs desire a system that allow
for interactive navigation, where users can request di-
rections to specific locations identified by the system.

(2) Text Recognition and Environmental Description.
The ability to recognize and verbally relay textual in-
formation is also important. This includes identify-
ing and reading door labels, room numbers, and signs.
Furthermore, recognizing the names of stores, signifi-
cant landmarks or other text contributes to better envi-
ronmental understanding and orientation.

(3) Comprehensive Scene Interpretation. PVIs ex-
pressed a desire for a system that provides a holistic
view of their surroundings. This “all-around vision”
function should describe streets, buildings, and other
elements in the vicinity.

(4) Integration of Text-to-Speech Technology. Incorpo-
rating text-to-speech technology for dynamic interac-
tion is also valuable.

D.2. More Comments

Navigation. The majority of participants (5 P: 5 partici-
pants) prioritize outdoor navigation, noting its greater com-
plexity and risk. They highlight that outdoor environments
pose larger obstacles, longer and more complex routes, and
a higher likelihood of getting lost compared to indoor sce-
narios. One participant emphasized, “Outdoor navigation
is much more important. Indoors, the reach of a cane
is much more likely to adequately capture the surround-
ings. The distances are shorter and the density of peo-
ple is higher.”. Another added, “Definitely outdoors. If
I have to go into a building I don’t know, it will proba-
bly only be for once. It’s not worth learning a way to do

that.”. The unpredictability of outdoor spaces, such as traf-
fic, was also mentioned as a significant factor. Conversely,
a minority (2 P) believes that indoor navigation is more im-
portant. They mention the challenges of navigating within
large unfamiliar buildings, locating specific rooms, stairs,
elevators, or exits, walking across a large open-area, and
walking in rooms with highly differentiated structures, such
as restrooms. Importantly, they spend most of their time
indoors.
Text Recognition. Today, PVIs mainly use screen readers
to recognize digital texts and usually use smartphones, or
smartphones Apps to read non-digital texts. However, they
find non-digital text reading is difficult and cumbersome,
like “Everything I receive on paper in the post annoys me.
I use apps like Seeing AI and Be My Eyes or the iPhone’s
magnifying glass to read non-digital texts, but using a smart
glass to read these text directly would be better.”. They also
pointed out that it is also important for them to read signs
to find the right floor or hallway and read door numbers to
enter the right room.
Other Functions. About depth estimation, “This function
helps one develop a mental map of an environment. You
get the proportions well.”. About object location, “In my
personal environment I am always very sure where all the
things I am looking for are. However, locating a true one
in a larger shelf section of 3-4 meters would be very use-
ful. A function that detects objects that don’t belong in that
space would also be very helpful to check a room for over-
looked clutter. The glasses could use a reference photo of
the tidy room and then report any anomalies, such as dirty
dishes on the table or socks on the floor.” and “If I only need
it if I can’t find something in my apartment, it could make
the search easier, but I would need it pretty rarely.”. About
surroundings understanding, “It would be important to me
that the description be highly efficient. The short form is
always first” and “Most of the time we are not interested
in the scene because it is too much information for us. But
descriptions of photos, environments, etc. are very exciting.
ChatGPT is really great.”. About scene recognition, “Per-
haps interesting for recognize different scenarios, but a cor-
respondingly efficient description of the image would serve
the same purpose. I can’t imagine a situation where I would
need room detection. I usually know which room I’m going
to or being led into.”. About visual Q&A, “This function
would make it possible to expand a short initial description
of an image dynamically and according to your own needs.
That would improve the overall function enormously.”.
Interaction. If there were such a general system, PVIs pre-
fer interacting with system through discrete button presses
or subtle gestures (6 P), rather than voice commands (1 P)
for privacy reasons, when inputting instructions. For receiv-
ing system feedback, they show a preference for auditory
feedback (for general purpose) and vibrations (for special



Task ADE-150 VizWiz Cap VizWiz VQA
PS IC VQA PQ B@1 CIDEr Other Unans Yes/No Number Acc(%)
↭ 39.2 – – – – – – –

↭ – 60.0 45.1 – – – – –
↭ – – – 30.5 92.1 70.1 13.7 49.1

↭ ↭ 37.7 57.8 46.8 – – – – –
↭ ↭ – 59.8 46.3 32.2 86.5 73.4 16.4 48.8

↭ ↭ ↭ 38.5 61.0 52.5 39.4 88.2 70.1 10.8 53.7

Table 7. Comparison of results of mixed training for different
tasks. Note:“Other”, “Unanswerable”, “Yes/No”, “Number” are 4
different answer types for VQA. (PS = panoptic segmentation, IC
= image captioning).

purpose such as obstacle avoidance).
Based on these comments and ideas, it becomes evi-

dent that for PVIs, navigation and quick, direct recogni-
tion of non-digital text are the two most critical function-
alities. Meanwhile, the multifaceted nature of navigation
encompasses functions like environmental comprehension,
obstacle avoidance, path planning, voice guidance and etc.
These insights serve as valuable guidance for our work. Fur-
thermore, the analysis of participants’ relevant feedback has
provided us with an initial understanding of creating a uni-
versal assistive system.

E. More Experiments
E.1. Complementariness in Multitasking

As shown in the experiments section, our @MODEL ex-
hibits a strong performance in captioning and VQA under
multi-task training. Here, we further study the role of seg-
mentation objectives in vision-language (VL) understand-
ing, as well as the role of different vision-language under-
standing tasks on each other. To investigate, we mix dif-
ferent tasks for training. In Table 7, for captioning, when
jointly trained with VQA or PS, or all tasks, CIDEr im-
proved by 1.2, 1.7 and 7.4 respectively. For VQA, we re-
port 5 numbers for better analysis, namely the accuracy for
4 Q&A types: other, unanswerable, yes/no, number, and
the overall accuracy. From the comparison of these num-
bers, when training VQA alone, the model tends to predict
“unanswerable” to improve the accuracy. Because in the
dataset, the unanswerable type of Q&A is the most com-
mon. For other types of Q&A, the accuracy is relatively
lower because a deeper or more granular understanding of
the semantic information of image is required to predict the
correct answers. After joint training with captioning, the
accuracy of unanswerable type Q&A decreased, and the ac-
curacy of other types increased. The model does not just re-
turn “unanswerable” blindly but understands more semantic
information of the image and then make predictions. When
all tasks are trained together, the accuracy of other type
Q&A is greatly improved (+8.9%). We analyze that it is
because the question of this type of Q&A is usually “what is
this?”, and the segmentation task naturally has a very good

assisting effect in answering this question. Segmentation
data can help models to learn more fine-grained visual un-
derstanding and consequently benefit vision-language tasks.
We also give some examples to show these improvements in
Fig. 7. Along with our findings in the main paper, we con-
clude that segmentation has clear benefits to VL learning
and different VL tasks are complementary to each other.

F. More Visualization
F.1. Visualization on Test Datasets

We present a comprehensive visualization of our model’s
performance on the test datasets in Fig. 8. For segmenta-
tion, we show some results in outdoor scene, indoor scene,
multi-person scene, especially the open-area mentioned by
the PVIs. For OCR, various types of text recognition results
can show the robustness and generalization of @MODEL.
For other task, @MODEL can also perform well.

F.2. Zero Shot
Finally, we apply the 5 tasks in a zero-shot manner to

show the generalization ability of @MODEL. @MODEL
performs well on three tasks: segmentation, depth estima-
tion, and OCR, as shown in Fig. 9. However, for open-
ended tasks, captioning and VQA , the performance on out-
of-dataset data can sometimes be less satisfactory (Fig. 9
(B)). Therefore, it may be necessary to perform large-scale
pre-training to enhance the model’s capability for handling
these tasks well in zero-shot.

G. More Discussion
This section discusses the limitations and future work of

this work for more insights on the research in this track.
Pre-training. In the main paper, we did not perform pre-
training. This has a certain impact on the capability of zero
shot, especially for open-ended tasks. In the future, we plan
to conduct pre-training on large-scale corpora to enhance
the model’s zero-shot capability. Additionally, we use a
unified language encoder to encode text in @MODEL. Pre-
training can enrich the vocabulary size, thereby improving
the model’s ability to open-vocabulary segmentation. The
importance of this open-vocabulary capability for practical
applications is self-evident, especially for blind users. As
mentioned by blind users in user study, they require systems
with high object recognition accuracy. When the model has
seen a greater variety of objects and can distinguish between
them, the recognition accuracy also increases. Additionally,
this open-vocabulary capability allows the model to handle
previously unseen objects. In sum, after pre-training, the
model can better handle the diversity, complexity and un-
predictability of usage scenarios.
Multi-task Training. As shown in the main submission,
@MODEL performs well on the OCR task during single-
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Figure 7. Examples to show the promotion of vision for vision-language and complementariness between different vision-language tasks.

task training, but there is a certain gap in performance dur-
ing multi-task training. Our analysis suggests that the OCR
dataset is too large, and the model does not balance mul-
tiple tasks during training. When dealing with multi-task
training with extremely imbalanced dataset sizes, it is not
enough to merely adjust loss weights differently. In the fu-
ture, we may try more optimization methods for multi-task
learning to ensure performance without greatly increasing
the training time.

Functions Development and Model Deployment. In our
user study, we have identified several potential and crucial
functions that received unanimous agreement from partic-
ipants. Furthermore, it’s important to note that @MODEL
is not limited to these five tasks alone; it can be extended

to more uni-modal or multi-modal tasks to provide more
functionalities. Our future research direction will focus on
building a PVIs-Centred generalist assistive system, lever-
aging @BENCH and @MODEL as cornerstones, to develop
a wide range of practical functions and services. As for
model deployment, although @MODEL achieves high per-
formance on multiple datasets, since the model is based on
Transformer, its costs are larger than the non-Transformer
models. Additionally, though @MODEL only has 62M pa-
rameters, it is still difficult to deploy such a model in the
portable device used by PVIs. Therefore, in our future work
we will discover how to extract or compress @MODEL into
an efficient light-weight model.
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Figure 8. Examples on different test datasets. These images cover a diversity of visual domains and concepts in the daily life of PVIs.
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