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A. Overview
In the supplementary document, we describe the exper-

imental setups, including the datasets (Sec. B), evaluation

metrics (Sec. C), and implementation details (Sec. D). Ad-

ditionally, we provide a further analysis of ControlNet, ex-

amining its global weights (Sec. E) and evaluating its per-

formance in terms of pose accuracy across different condi-

tions and diffusion models (Sec. F), demonstrating that the

proposed approach is not limited to specific conditions or

diffusion models. Finally, we establish the superiority of

our method by presenting additional results across various

conditions and prompts in Sec. G.

B. Datasets
In this section, we describe the datasets used in the ex-

periments. We utilize images from the internet and four

in-the-wild datasets to validate our method: FFHQ [11],

AFHQ [5], CompCars [12], and LSUN Church [19]. FFHQ

is employed for analyzing ControlNet [20] and for compar-

ing the performance of SnP with pose-guided image gen-

eration models, while the remaining datasets are used to

present qualitative results. Initially, we partition the FFHQ

dataset into three distinct subsets: FFHQ-v, FFHQ-C, and

FFHQ-B. FFHQ-v serves as a validation set specifically

for analyzing the behavior of ControlNet, conducting ab-

lation studies, and comparing pose accuracy between Con-

trolNet conditioned on depth and keypoints, as discussed in

Sec. 4, Sec. 5.4, and Sec. 5.5 of the main paper. FFHQ-C

and FFHQ-B, on the other hand, are used as test sets for

comparing the performance of SnP with baseline models in

Sec. 5.1 of the main paper. To elaborate, we sample images

for image prompts from FFHQ-C and use FFHQ-B as a real

dataset for measuring the FID score, as detailed in Sec. C.

The pose distributions across the three datasets are as fol-

lows: FFHQ-C replicates the centralized pose distribution

of the original FFHQ dataset, while FFHQ-B adopts a uni-

form pose distribution. The poses in FFHQ-B and FFHQ-C

cover rotation angles from −50◦ to 50◦ and elevation an-

gles from −20◦ to 30◦. In contrast, FFHQ-v maintains a

uniform rotation angle distribution but sustains a centralized

elevation pose distribution, offering a broad range of angles.

Specifically, FFHQ-v includes rotation angles from −90◦ to

90◦ and elevation angles from −55◦ to 45◦. Each dataset

contains distinct images, ensuring no overlap. FFHQ-B and

FFHQ-C each consist of 5,065 images, while FFHQ-v con-

tains 100 images. For the other datasets, we use the pro-

vided test sets.

In addition, we construct two human pose datasets,

PoseH-v and PoseH-B, for sampling pose images for analy-

sis and evaluation, respectively. Recognizing that the FFHQ

dataset has a limited range of poses and primarily consists

of images captured at near-frontal angles, we create an ad-

ditional pose dataset with a uniform and wide-ranging pose

distribution. This enables a more accurate assessment of

the effects of models on the pose of generated images across

various angles. The poses in both the PoseH-v and PoseH-B

datasets span rotation angles from −90◦ to 90◦ and eleva-

tion angles from −20◦ to 30◦, mirroring the pose distribu-

tion of FFHQ. Specifically, we follow the rotation range of

FFHQ and the elevation range of FFHQ-B. This decision

is based on the observation that most head pose estimation

models exhibit lower accuracy in estimating elevation com-

pared to rotation [9], especially as the pose deviates fur-

ther from the frontal view [8]. To improve the accuracy of

pose estimation, we exclude elevation angles within certain

ranges that are infrequent in the FFHQ dataset. PoseH-v

and PoseH-B contain 100 and 5,065 images, respectively.

Each pose dataset consists of ground truth poses, two types

of depth conditions, synthetic images, and two types of

keypoints. The ground truth poses are uniformly sampled

from the distribution. Synthetic images are generated using

SD [15] to obtain conditions. One type of depth condition is

rendered from a single 3D mesh of a human obtained from

Objaverse [7], utilizing poses through Blender [6] for Con-

trolNet, SmartControl [13], and SnP (SD). The other depth

condition is estimated from synthetic images for ControlNet

and SnP based on SDXL using ZoeDepth [1]. Addition-
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ally, two types of keypoints (KP) are obtained from Open-

Pose [3] and DIFT [17] for ControlNet-KP and DragDiffu-

sion [16], respectively.

C. Evaluation Metrics

In this section, we explain the metrics used for the quan-

titative performance comparison. We evaluate our method

and baseline models based on pose accuracy, prompt align-

ment, and the photorealism of the generated images. To

assess pose accuracy, we compare the estimated pose of

generated images using an off-the-shelf pose estimation

model [9] with the ground truth pose used during render-

ing. The pose discrepancy is quantified using the root mean

square error (RMSE), measured in degrees. For prompt

alignment, we compute the CLIP cosine similarity [14] be-

tween the generated images and the image prompts sampled

from FFHQ-C. To evaluate photorealism, as detailed in [4],

we compute the Frechet Inception Distance (FID) [10] be-

tween a combined set of 10,130 images from FFHQ-B,

which includes images with x-flip applied, and the gener-

ated images. Although FFHQ-C is used for sampling im-

age prompts, the FID score is computed using FFHQ-B for

two reasons. First, FFHQ-B contains images not used as

prompts, allowing us to assess photorealism without the in-

fluence of the image prompts. Second, since FID evaluates

the discrepancy between the distribution of real images and

generated images, it incorporates the pose distribution of

the real dataset into the evaluation. FFHQ-B, with its pose-

balanced distribution, is preferred over FFHQ-C, which is

dominated by frontal-facing poses.

D. Implementation Details

We employ 30 inference steps with a guidance scale s set

to 7.5 for SD and 5.0 for SDXL. Additionally, we configure

λt as 0.3 for all experiments. Also, we use a global weight

of 0.6 for ControlNet and SnP in SDXL. This is based on the

analysis in Sec. E, which shows that higher global weights

in SDXL significantly reduce the prompt alignment. In SnP,

in addition to utilizing the global weight, we optionally in-

corporate pixel-wise weight maps obtained from the Weight

Control Module (WCM) to adjust the weights of Control-

Net features, as outlined in Sec. 4.2. We specifically ad-

just the values of these weight maps to range between 0.5

and 1.0 for SD, and between 0.6 and 1.0 for SDXL. These

ranges enable the model to maintain the pose of depth con-

dition while enhancing the fidelity of shape reflection from

the prompt (Sec. E).

In our approach, we leverage both positive and negative

text prompts, either in conjunction with image prompts or

independently. For the FFHQ dataset discussed in Sec. B,

the positive prompt is ”the best quality, detailed, and pro-

fessional photograph of a human with muted color pupils.”,

whereas the negative prompt is ”grayscale, bad anatomy,

bad hands, cropped, worst quality”. Along with the images

from FFHQ, to investigate the behavior of ControlNet in

Sec. 4 of the main paper, we append ”side view” or ”frontal

view” to the text prompt based on the target rotation poses.

For animals, the positive prompt is ”the best quality, de-

tailed, and professional photograph of a category,” while the

negative prompt is ”vivid pupils, grayscale, bad anatomy,

cropped, worst quality”. In this context, category refers to

either a specific category depicted in the figure or wild ani-

mal for AFHQWild dataset.

E. Global weight for ControlNet features
In ControlNet, the features from the ControlNet encoder

EC are scaled by the global weight α and then added to

the corresponding features of the encoder E before being

passed to the decoder D. We analyze the impact of the

global weight α on the pose accuracy, shape incorporation,

and prompt alignment of the generated images. Specifically,

shape incorporation is evaluated using a structural distance

based on DINO similarity [18] to assess the alignment be-

tween the shape of the conditions and the generated images.

Additionally, we evaluate pose accuracy and prompt align-

ment as described in Sec. C. Furthermore, we conduct the

analysis of ControlNet using two diffusion models: SD and

SDXL. To isolate the effects of the models and exclude the

impact of conditions, we use depth conditions estimated

from ZoeDepth [1] for both models. The datasets used in

this experiment are identical to those described in Sec. 4.1.

Initially, we investigate the impact of the global weight

on pose accuracy and shape incorporation between the con-

dition and the generated images. As shown in Fig. Aa, Con-

trolNets based on SD and SDXL uniformly reflect the pose

of the condition once their global weights reach 0.6 and 0.5,

respectively, with the pose remaining unchanged beyond

these values. In contrast, as demonstrated in Fig. Ab, the

structure distance based on DINO similarity gradually de-

creases even when the global weights exceed these thresh-

olds. From this, we conclude that ControlNets reflect the

pose of the condition when the global weight is around 0.5

to 0.6, and applying higher global weights primarily af-

fects the reflection of the shape of the condition. However,

while adjusting the global weight of ControlNet helps re-

flect the pose of the given condition, as noted in previous

studies [2, 13], relying solely on the global weight is insuf-

ficient to faithfully capture the pose. Therefore, we propose

SnP to generate images that accurately reflect the pose of

the conditions while faithfully incorporating the prompt, in-

cluding its shape.

Additionally, we assess the impact of ControlNet’s

global weight on prompt alignment, measured using CLIP

cosine similarity. As shown in Fig. Ac, it is evident that,

with the same global weight, SDXL-based ControlNet sig-
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Figure A. Comparison of ControlNets based on SD and SDXL in

terms of pose accuracy, shape incorporation, and prompt align-

ment as a function of the global weight. To evaluate these aspects

between given conditions and generated images, we measure pose

accuracy using pose error, shape incorporation using structural dis-

tance based on DINO similarity, and prompt alignment using CLIP

cosine similarity between the given prompts and generated images.

(a) Pose accuracy remains consistent with the condition once the

global weight exceeds 0.5 for SD and 0.6 for SDXL, while (b) the

shape continues to be reflected beyond these thresholds. (c) Ad-

ditionally, prompt alignment deteriorates significantly in SDXL-

based ControlNet compared to SD-based ControlNet as the global

weight increases.
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Figure B. Additional analysis of the impact of ControlNet features

generated from the negative prompt on the pose (a) and prompt

(b) alignment of the generated images, across two additional con-

ditions (NB, Zoe) and SDXL. The results show a positive correla-

tion with the findings in Fig. 2, independent of the condition and

diffusion model.

nificantly underperforms in prompt alignment compared to

SD-based ControlNet. Therefore, to ensure comparable

prompt alignment in SDXL-based ControlNet, we set its

global weight to 0.6, as opposed to 1.0 in SD-based Control-

Net. We note that this value is consistently applied across all

SDXL experiments for both ControlNet and SnP in Sec. 5.4

of the main paper.

F. Analysis of ControlNet According to the Dif-
fusion Model and Condition

In this section, we conduct further analysis of the find-

ings in Sec. 4.1 with different conditions and diffusion mod-

els. Specifically, since we conduct the previous analyses

using depth conditions rendered from a 3D mesh (Sec. 4.1),

we extend this analysis by incorporating two additional con-

ditions that also contain 3D spatial information: 1) normal-

bae (NB), and 2) estimated depth (Zoe) from ZoeDepth [1].

Additionally, we perform the same analysis using SDXL-

based ControlNet conditioned on Zoe to examine the differ-
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Figure C. Additional analysis of the impact of ControlNet features

passed to each decoder block on the pose accuracy of the generated

images, across additional conditions (a, b) and SDXL (c). (a) and

(b) use ControlNet based on SD. The experimental results indicate

that the blocks influencing the pose of the generated images are

determined by the diffusion model rather than the condition. Al-

though the specific blocks that influence the pose differ between

models, a commonality is that only certain blocks affect the pose

of the generated images.

ences between diffusion models.

First, we conduct the same analyses using two different

conditions for ControlNet, comparing the results of Con-

trolNet conditioned on the rendered depth (Fig. 2 and Fig. 5)

with those conditioned on NB and Zoe. Consequently, all

outcomes conditioned on NB and Zoe demonstrate a pos-

itive correlation with the rendered depth conditions results

across all analyses (Fig. B, Fig. Ca, and Fig. Cb). Espe-

cially, as depicted in Fig. Ca and Fig. Cb, the analyses of

ControlNet features passed to each decoder block are con-

sistent with the results obtained using rendered depth con-

dition (Fig. 5). In the analyses using three conditions, the

middle block (MB) has the most significant impact on pose,

followed by the feature from the encoder block correspond-

ing to the fourth decoder block. Based on these results, we

conclude that SnP can be applied regardless of conditions.

Also, we compare the results of the same analyses be-

tween ControlNets based on SD and SDXL. As shown in

Fig. B, the analyses of features obtained from the nega-

tive prompt in SDXL-based ControlNet show positive cor-

relations with the results of SD-based ControlNet (Fig. 2).

However, as shown in Fig. Bb, SDXL-based ControlNet ex-

hibits lower prompt alignment compared to SD-based Con-

trolNet, as the ControlNet features hinder prompt alignment

more in SDXL-based ControlNet than in SD-based Control-

Net (Fig. Ac).

The difference between the two models is highlighted in

the analysis of ControlNet features passed to each decoder

block, as shown in Fig. Cc. In SD-based ControlNet, two

blocks influence the pose of the generated images (Fig. Cb),

whereas in SDXL-based ControlNet, only the middle block

(MB) affects the pose. This difference arises from struc-

tural disparities between the two models. Specifically, in

SD, the roles of the middle and fourth blocks are distinct

due to upsampling and three intermediate blocks. In con-

trast, SDXL lacks these intermediate blocks, resulting in no

differentiation between the middle block and the first de-

coder block (which corresponds to the fourth block in SD).

Despite the differences in the specific blocks that influence

the pose of the generated images in each model, a common-

ality remains: only certain blocks affect the pose. Through

this analysis, we identify structural differences between the

models and apply SnP to the blocks influencing the pose,

allowing the models to generate images that reflect both the

pose of the condition and the content of the prompt, regard-

less of the diffusion model used.

G. Additional Qualitative Results
In this section, we aim to demonstrate the superiority

of our method by showcasing visual results with new ob-

jects or poses, extending from the results presented in the

main paper. We validate the effectiveness of our approach

by comparing it with depth-conditional ControlNet, as we

use it in a training-free manner. First, in Fig. D, we gen-

erate images that reflect various text prompts and the poses

of depth conditions extracted from five different objects: a

car, a house, a bag, a teddy bear, and chairs. From the depth



condition obtained from the car image, we generate various

types of cars, while from the depth condition extracted from

the house image, we produce images of diverse architec-

tural structures. Images of various types of bags and dolls

are generated from depth conditions extracted from bag and

teddy bear images, respectively. Furthermore, to demon-

strate the effectiveness of our method on multi-object im-

ages, we extract depth conditions from images containing

two chairs and generate images of various types of chairs

guided by text prompts. Comparing the results of our model

and ControlNet, our method generates images that reflect

the text prompt while maintaining the pose of the given

depth condition. In contrast, ControlNet tends to produce

objects that follow the shape of the depth condition rather

than the text prompt. This tendency of ControlNet leads

to the problem of images generated from the same depth

condition having consistent shapes regardless of the text

prompt, as already shown in the main paper.

Furthermore, we conduct a qualitative comparison be-

tween SnP and ControlNet using image prompts (Fig. E) by

generating images of wild animals and humans. Even in this

case, the same tendency persists. In more detail, ControlNet

demonstrates a tendency to faithfully integrate the provided

depth condition, which leads to the emergence of artifacts.

For instance, as illustrated in the third column of Fig. Ea, it

generates images of a tiger with ears resembling those of a

fox, as seen across all results in Fig. Ea. Particularly note-

worthy is Fig. Eb, where, despite the absence of glasses and

differences in hairstyle in the image prompt, these elements

appear in the generated images due to the influence of the

depth condition, especially in the third, sixth, and seventh

columns. These occurrences are more pronounced in Con-

trolNet, which is heavily influenced by the depth condition,

contrasting with SnP, which reduces the impact of the depth

condition on the shape.

In Sec. 5.2 of the main paper, we demonstrate that our

model can generate images with shapes that are indepen-

dent of the depth condition but dependent on the prompts,

unlike structure-guided image generation models. Taking

it a step further, we present additional results in Fig. F to

demonstrate that our method can generate images based on

the given prompt with diverse shapes, while preserving the

pose of the depth condition, even when the depth condition

and the prompt belong to different categories (e.g., vehi-

cle). As evident from the results, our method generates var-

ious objects with diverse shapes from a single depth condi-

tion obtained from a bag image, in contrast to the results of

depth-conditional ControlNet.

Also, we generate diverse images under identical con-

ditions, using sampled images from FFHQ for the image

prompt and sampled depth conditions from PoseH for pose

control. As shown in Fig. G, images generated from differ-

ent image prompts under the same depth condition exhibit

the same pose but different content, aligned with the im-

age prompts. Additionally, images generated from the same

image prompt but different depth conditions show the align-

ment of poses with different depth conditions while main-

taining the same content. We note that the same latent is

used to generate images in each column.
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Figure D. Images of various objects generated from our method and depth-conditional ControlNet using diverse text prompts and depth

conditions. Images for depth estimation of the house, bag, teddy bear, and chairs are obtained from the internet, while images of the car are

sourced from CompCars [12]. Images generated by ControlNet are shape-dependent on the depth conditions, resulting in shared shapes

across images generated from the same depth condition. In contrast, images produced by our model primarily reflect the provided prompts,

including shape, rather than the depth conditions.
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(a) Wild animal images generated from the poses of other animals.
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(b) Human face images generated using the poses of other human faces.

Figure E. Qualitative results conditioned on the estimated depth maps (the third row) from pose images. The fourth and fifth rows show

the results of ControlNet and our method, respectively. Images generated from ControlNet exhibit artifacts (e.g., ears, hat, glasses etc.)

to reflect the shape of the depth condition, whereas images generated from our method more accurately reflect the prompts, thus avoiding

such artifacts.
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Figure F. Images of various objects generated from our method (using three different seeds) and depth-conditional ControlNet utilizing

the depth condition estimated from an entirely different object (bag). Note that all images in each row are generated using the same latent.

Also, the images in the first and second rows are generated using the same latent. Despite generating images from the depth condition

extracted from an entirely different object, unlike ControlNet, SnP produces images with diverse shapes reflecting the prompt, which is

also evident in images generated from different seeds.
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Figure G. Diverse image generation under identical conditions: depth conditions and image prompts. The images in each column are

generated using the same latent and image prompt, while the images in each row are generated using the same depth condition to control

the pose.


