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A. Additional Materials
An overview of the paper and a brief presentation video are available on our project page: https://youngjun-

jun.github.io/dis-dis-rep.

B. Datasets
This section provides an overview of the benchmark datasets (Fig. 1). The number of samples for each dataset is shown in

Table 1.
Cars3D [15]. The Cars3D dataset is a car dataset created from CAD models with the following ground truth factors: elevation,
azimuth, object type.
Shapes3D [2]. The Shapes3D dataset is composed of 3D shapes with the following ground truth factors: floor hue, wall hue,
object hue, scale, shape, orientation.
MPI3D-toy [6]. The MPI3D-toy dataset is part of the MPI3D dataset created to benchmark representation learning in
simulated and real-world environments. It focuses on the toy type with the following ground truth factors: object color, object
shape, object size, camera height, background color, first DOF, second DOF.
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CelebA [13]. The CelebFaces Attributes Dataset (CelebA) is a face attributes dataset with 40 attributes. Although CelebA
is not specifically designed for disentanglement, it allows for the validation of effects in real-world scenarios using various
attributes.

Cars3D Shapes3D

MPI3D-toy CelebA

Figure 1. The samples from each dataset

Table 1. The number of samples for each dataset

Cars3D Shapes3D MPI3D CelebA

17,568 480,000 1,036,000 202,599



C. More Implementation Details
C.1. Training Details

C.1.1 Algorithms

Entire training framework. As in Algorithm 1, the LDM training process using DyGA is conducted on an epoch-by-epoch
basis. After every r epochs, anchor selection is performed for feature alignment in the subsequent r epochs. Considering the
dataset size, we set r = 5 for the Cars3D dataset, while r = 1 was used for the others.
Anchor selection in DyGA. The anchor selection process (Algorithm 2) consists of four stages. First, subspaces are updated
using HDDC. Then, a Gaussian to split is selected based on density, and the two split Gaussians are updated using only the
features within the cluster. Next, excessively small Gaussians that could act as outliers during feature alignment are removed.
Finally, the Gaussians are updated using HDDC. These steps are performed at the latent unit level, with multi-processing
utilized for each latent unit and accelerated through matrix multiplication. The anchor selection process for a single latent unit
is completed within 30 seconds.
Feature alignment in DyGA. Naı̈vely aligning features with the anchors selected through anchor selection hinders the
backpropagation process. Therefore, as shown in Algorithm 3, we use the Gumbel-softmax function [9] with a sufficiently
small τ = 0.0001 to prevent distortion of the Gaussian mean while still allowing back-propagation. After this, the features
undergo alignment in the direction of the anchor.

Algorithm 1 Entire training framework

Input: X: dataset, {σt}Tt=1: Noise schedule, E(·): VQ-encoder, ϵθ(·): Denoising network, f(·): Feature extractor
for epoch = 1, . . . ,max epoch do

for xi
0 ∈ X do

Sample ϵ ∼ N (0, I), t ∼ Uniform({0, 1, . . . , T})
zit ← E(xi

0) + σtϵ
ci ← f(xi

0)
if epoch ≥ r then c̃i ← Feature alignment(ci)
else c̃i ← ci
end if
Predict noise ϵθ(zt, t, c̃i)
Compute loss and gradient
Update parameters θ
Anchor selection

end for
end for

Algorithm 2 Anchor selection of the kth cluster

Input: c ∈ Rd: latent units
Output: µk, Σk, wk, Λk, vk, Dk

Initialize µk, Σk, wk, Λk, vk, Dk

for iter = 1, . . . ,max iter do
E-step: Calculate rik
M-step: Update µk, Σk, wk

Update subspaces: Compute Λk, vk, Dk

end for
Calculate density of clusters ∈ F
while F ̸= ∅ do

Choose cluster f ∈ F
Split cluster f
E-step, M-step, and Update subspaces in the cluster
Update F

end while
Remove small Gaussians
for iter = 1, . . . ,max iter do

E-step, M-step, and Update subspaces
end for

Algorithm 3 Feature alignment

Input: c ∈ Rd: latent unit, τ : softmax parameter, λ: feature
alignment parameter
Output: ĉ ∈ Rd

E-step: Calculate responsibility r
Gumbel-Softmax:

1. Generate Gumbel noise gk

2. Compute yk = softmax
(
rk+gk

τ

)
Update µk ←

∑
k ykµk

Compute multiplier δ ← λ exp

(
− 1

d

∑d
j=1

∣∣∣∣ cji−µ
j
k

cj

∣∣∣∣)
Align latent unit c̃← c+ δ(µk − c)



C.1.2 LDM training details

During the training process of LDM, we set the batch size to 512 for the Cars3D [15], Shapes3D [2], and MPI3D-toy [6]
datasets, and 64 for the CelebA dataset. The learning rate and Exponential Moving Average (EMA) rate were set to 0.0001
and 0.9999, respectively, for all datasets, following EncDiff [22].

C.2. Model Architecture

The latent diffusion model (LDM) [17] we used is a diffusion model for images in the latent space reduced by VQ-GAN [5].
The architectures of VQ-GAN and the LDM denoising U-Net are shown in Table 2 and Table 3, respectively. Additionally, the
feature extractor (Table 4), similar to previous studies [21, 22], uses a structure where a scalar value is taken for each latent
unit through a CNN module and then passed through independent MLP modules. We used the same settings for all datasets.

Table 2. VQ-GAN architecture parameters

Parameter Value

Embedding dimensionality 3
Number of embeddings 2048
Channels in first conv layer 32
Channel multipliers [1, 2, 4]
Residual blocks per layer 2
Dropout rate 0.0
Discriminator start epoch 0
Discriminator loss weight 0.75
Codebook loss weight 1.0

Table 3. Denoising U-Net architecture parameters

Parameter Value

Input image size 16
Input channels 3
Base channels 64
Attention resolutions [1, 2, 4]
Residual blocks per layer 2
Channel multipliers [1, 2, 4, 4]
Attention heads 8
Scale-shift normalization True
Context dimension 32
Dropout rate 0.1
Skip dropout rate 0.2
Noise schedule Linear
Diffusion timestep 1000

Table 4. Feature extractor architecture

CNN module

Conv 7× 7× 3× 64, stride= 1, padding= 3
BatchNorm
ReLU
Conv 4× 4× 64× 128, stride= 1, padding= 3
BatchNorm
ReLU
Conv 4× 4× 128× 256, stride= 2, padding= 1
BatchNorm
ReLU
Conv 4× 4× 256× 256, stride= 2, padding= 1
BatchNorm
ReLU
Conv 4× 4× 256× 256, stride= 2, padding= 1
BatchNorm
ReLU
FC 4096× 4096
ReLU
FC 4096× 256
ReLU
FC 256×N

MLP module

FC 1× 256
ReLU
FC 256× 512
ReLU
FC 512× 32
ReLU

D. More Experiments
D.1. Results for more metrics

In this subsection, as shown in Table 5, we evaluate the disentanglement performance of our method using not only the
FactorVAE score [10] and DCI disentanglement [4], but also additional metrics such as MIG [3], Modularity score [16], SAP
score [12], and InfoMEC InfoM score [7].



Table 5. Results for more metrics on Cars3D, Shapes3D and MPI3D-toy datasets

Dataset FactorVAE score↑ DCI↑ MIG↑ Modularity score↑ SAP score↑ InfoM score↑

Cars3D 0.941± 0.002 0.414± 0.013 0.109± 0.002 0.934± 0.001 0.009± 0.002 0.417± 0.004

Shapes3D 1.000± 0.000 0.938± 0.001 0.507± 0.002 0.930± 0.001 0.183± 0.006 0.569± 0.002

MPI3D-toy 0.930± 0.004 0.627± 0.002 0.364± 0.001 0.882± 0.002 0.174± 0.002 0.495± 0.003

Table 6. Comparison between DyGA and FSQ

Method FactorVAE score↑ DCI↑

Baseline 0.856± 0.004 0.586± 0.002

+FSQ, SD 0.606± 0.006 0.384± 0.002
+DyGA, SD 0.930± 0.004 0.627± 0.002

D.2. DyGA and SD Analysis

DyGA Analysis. Our proposed Dynamic Gaussian Anchoring (DyGA) can dynamically adjust the position and number of
anchors. A similar approach can be found in the quantization methods used in variational autoencoder (VAE) [11]-based
approaches [7, 8]. One such method, finite scalar quantization (FSQ) [14], can be applied to diffusion-based models as a way
to organize latent units. However, when we set the number of codebooks to 1 and the levels to [8, 5, 5], performance actually
degraded, as shown in Table 6, with similar performance drops observed in other settings. This suggests that attempts to
organize latent units in diffusion-based models using a fixed number of quantization values or fixed quantized values may not
be suitable. Therefore, we introduced DyGA, which dynamically adjusts the number and positions of anchors, resulting in
significant performance improvements.

Table 7. Skip and Backbone Dropout

Method FactorVAE score↑ DCI↑

+BD-0.1 0.798± 0.005 0.610± 0.002

Baseline 0.856± 0.004 0.586± 0.002

+SD-0.1 0.852± 0.005 0.598± 0.007
+SD-0.2 0.863± 0.005 0.615± 0.002
+SD-0.3 0.855± 0.006 0.603± 0.002

SD Analysis. Skip Dropout (SD) stochastically blinds skip connection features to prevent the continuous accumulation of
factor information in specific weights. This forces the diffusion U-Net to rely on the backbone features connected to the feature
extractor, which continuously provide factor information. To analyze this effect more deeply, we examine the impact of SD by
using backbone dropout (BD), which dropouts backbone features in parts with skip connections. On the other hand, it has been
shown that dropout rates between 0.4 and 0.8 do not affect performance improvement [19], and we have experimentally found
that a high skip dropout ratio (e.g., 1− p = 1.0) negatively impacts the convergence of the diffusion model. Therefore, we
used skip dropout rates of 0.1, 0.2, and 0.3, while the backbone dropout rate was set to 0.1. As a result, as shown in Table 7, an
appropriate skip dropout rate was effective, whereas backbone dropout degraded performance.

D.3. Latent Interpolation

There has been no exploration of the disentangled representation space of diffusion-based models (i.e., the space of outputs
from the feature extractor). In this subsection, we visualize images generated by interpolating latent units extracted from
two images. This intermediate image generation enables image morphing [1, 20, 23, 24], which shows the transformation
between images as a video. Experimentally, when using spherical linear interpolation (slerp) [18] for the diffusion latent
interpolation method in DiffMorpher [23], the generated intermediate images appeared unnatural. Instead, as shown in Fig. 2,
images generated using linear interpolation suggest the potential for image morphing through disentanglement.



Image 1 Image 2 Image 1 Image 2

(a) CelebA (b) Cars3D

Figure 2. Visualization of latent interpolation on the Cars3D and CelebA datasets. (a) For CelebA, we observe natural transitions between
two images in terms of hair color, hair style, skin color, background color, gender, and smile. (b) Similarly, in
Cars3D, we observe smooth changes in vehicle type, color, azimuth, and elevation.

E. More Visualizations
E.1. Training loss curve

In this subsection, we plot the training loss curve according to different parameters. From Fig. 3, we can confirm that our
methods remain stable despite changes in training parameters (λ: feature alignment parameter, 1− p: skip dropout ratio).

(a) Feature alignment parameter 𝜆𝜆 (b) Skip dropout ratio 1 − 𝑝𝑝

Figure 3. Training loss curve



E.2. More Latent Interchange Results

One way to verify if a trained feature extractor extracts well-disentangled representations is to manipulate them directly.
If the visualized results accurately reflect the intended changes in representation, it indicates that the latent units faithfully
represent the factors. Here, we refer to changing one of the latent units of the source image to the latent unit of the target image
as a latent interchange. The images generated using the latent units created through latent interchange conditionally alter the
source image using the single latent unit information of the target image. Fig. 4 visualizes how well the feature extractor is
trained in each dataset through latent interchange. Our method demonstrates that the images generated using latent interchange
effectively reflect a single characteristic of the target image.

E.3. More Attention Map Visualizations

Since our diffusion model receives conditions through cross attention, it is possible to visualize the attention map. This
attention map shows which areas of the image are being highlighted, indicating which parts of the image each latent unit uses
to generate. The results on various datasets can be seen in Figs. 5 and 6.

E.4. More Latent Unit Visualizations

Disentangled representation learning aims to make each latent unit sensitive to a single fundamental factor while being
invariant to the other factors. At this point, the latent unit with the highest association (e.g., normalized mutual information) to
a given factor best reflects the information of that factor. Therefore, we visualize the latent units for various data points in the
Shapes3D dataset (Fig. 7) to see how well the latent units separate the factor attributes.
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Figure 4. Latent interchange results on Cars3D, Shapes3D, MPI3D-toy, and CelebA datasets



Shapes3D Object shape Object size Floor hue Wall hue Object hue Orientation

Figure 5. Attention map visualizations on Shapes3D dataset



MPI3D-toy Object size Camera height Arc color Object colorCelebA Smile Skin Hair Color Hair Style

Figure 6. Attention map visualizations on CelebA and MPI3D-toy datasets

Floor hue Wall hue Object hue

Object scale Object shape Orientation

Figure 7. Visualization of latent units on Shapes3D dataset. Each visualized latent unit here is associated with the written factor (e.g., it has
the highest normalized mutual information). Each color represents an attribute of the factor, such as red in object color or cube in object
shape.
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