
A. Algorithms

Algorithm 1 Confidence-based Hash Merging
Input: Confidence threshold ϵ, node size threshold τ , out-

put soft hash matrix Z = [hi] where Z ∈ RN×L,
hi ∈ (−1, 1)L ∀i ∈ {1, · · · , N}.

Output: Refined hash matrix Z ′ = [bi] where Z ′ ∈ RN×L

Extract hash set C = {(b, cb)|b ∈ sign(Z), ch =
count of h in sign(Z)}, and let B ∈ Rm×L with the
number of detected categories m. // (Make a dictionary for
all test samples (Hash, count))
for hi in Z do
(bi, c

b)← sign(hi)
if ch < τ then

Identify the low confidence indices Ii =
{j
∣∣|zij | < ϵ}

(kc, {Pk}kc

k=1)← Creating Candidates (Algorithm 2)
for k = 1, · · · , kc do

Wk ← 0
if Dk ∈ B then

Wk ← cDkPk // (Transform the probability to the
weight by multiplying the probability and count)

end if
end for
k̂ ← argmax(W1, · · · ,Wkc ) // (Find most-likely (best)
candidate’s index.)
if Dk̂ ∈ B then

bi ← Dk̂ // (If the best candidate is in the hash dictionary,
return it.)

else
bi ← Find Largest Neighbor(hi, C) // (Otherwise, find
the largest neighbor (Algorithm 3).)

end if
end if

end for

B. Ablation study
To verify the effectiveness of NCD-DLT in a dynamic

long-tailed scenario, we conduct ablation studies on the
long-tailed CIFAR100 dataset with ρ = 100.

B.1. Impact of code length L

Although OCD [5] suggested L = 12, we conduct our
own ablation study to identify the best code length for NCD-
DLT. Consistent with OCD [5], NCD-DLT also performed
best at L = 12 for ‘New’ accuracy, as shown in Figure 6.
Although the highest ‘All’ accuracy occurred at L = 16,
we prioritize ‘New’ accuracy and choose L = 12 due to
comparable ‘All’ accuracy levels.

B.2. Impact of λ

In Sec.5.4.1, we used the same λ for Eq.(7) in an ablation
study. However, we separately analyze the impact of Lsd

Algorithm 2 Creating Candidates
Input: Low confidence indices Ii, current soft-hash hi and

its binary hash bi.
Output: The number of candidates kc, the probability

mapping the current instance to the candidate, Pi ←
{P1, · · · , Pkc

}.
k ← 0
for I ′i ⊆ Ii do
k ← k + 1
Dk ← hi // (Copying the current hash.)
dk ← 0 // (Initialize soft Hamming distance.)
for j ∈ I ′i do
Dkj ← 1− bij // (Define candidate hash.)
dk ← dk + |hij | // (Compute the soft Hamming
distance.)

end for
Sk ← ϵL− dk //(Define soft Hamming similarity.)

end for
kc ← k // (The number of current candidates.)
Di ← {D1, · · · , Dk} // (Final candidate set of the current
hash.)
P1, · · · , Pkc

= softmax(S1, S2, · · ·Skc
) // (Transform

the similarity to the probability.)
Pi ← {P1, · · · , Pkc}

Algorithm 3 Finding Largest Neighbor
Input: a hash instance bi, Hash set C
Output: largest neighbor hash b̃i

d← 0
while True do
d← d+ 1 // (The target Hamming distance between
candidates and the current hash. )
Create a candidate set G = {g|Hamming(bi, g) = d}
// (Find candidates. )
if G ∩ C ≠ ∅ then

return b̃i = argmaxk̂{k̂ ∈ 1, · · · , |C|} // (If any
candidates are in the hash dictionary, return the largest
candidate. Otherwise, increase the target Hamming dis-
tance. )

end if
end while

and Ldd by assigning different weights, λs for static loss
and λd for distillation loss, instead of a single λ. We vary λs

and λd across [1, 5, 10, 20, 100]. As expected, larger λs in-
crease ‘Old’ accuracy by preserving initial training knowl-
edge (Figure 7). The ‘New’ accuracy peak when λd was
set to 5 or 20. We select λs = λd = 10 considering both
‘All’ and ‘New’ accuracies, consistent with the main paper
results.



Figure 6. The ablation study on code length shows that larger L degrades ‘New’ accuracy. The best performance is achieved at L = 12.

Figure 7. The best ‘All’ accuracy is achieved when λs is 10 or 100. We choose λs = λd = 10 due to the higher ‘New’ accuracy.

Figure 8. The impact of τ and ϵ on pseudo-labeling accuracy shows that ϵ ≥ 0.3 negatively affects accuracy, while ϵ = 0.1 and ϵ = 0.2
yield similar results. τ = 10 improves ‘New’ accuracy. We selecte τ = 10 and ϵ = 0.2 for further experiments.

B.3. Impact of τ and ϵ

B.3.1 Impact of τ and ϵ in pseudo-labeling

Figure 8 illustrates the impact of τ and ϵ in graph merg-
ing for pseudo-labeling based on the results before post-
processing. For ϵ, lower values lead to better accuracy,
as they identify low-confidence indices where the original
cluster is likely a neighbor, thereby smaller ϵ (i.e., more
stringent) consistently improve accuracy. For τ , larger val-
ues merge more clusters into confident neighbor nodes, im-

proving performance up to τ = 10, after which accuracy
declined. Given similar ‘All’ accuracy levels, we select
τ = 10 and ϵ = 0.2, where the ‘New’ accuracy was highest.

B.3.2 Impact of τ and ϵ in post-processing

Unlike their effect in pseudo-labeling, the impact of τ and ϵ
in post-processing follows a similar trend but peaks differ-
ently as shown in Figure 9. Excessively large values of both
τ and ϵ degrade performance due to the over-merging of



Figure 9. The impact of τ and ϵ on post-processing accuracy shows that τ = 30 and ϵ = 0.3 yield the best ‘New’ accuracy while
maintaining comparable ‘All’ accuracy.

distinct clusters. For ‘New’ accuracy, ϵ = 0.3 consistently
provides the best results, while ‘All’ accuracy shows mini-
mal variation between ϵ = 0.1 and ϵ = 0.3. Therefore, we
select ϵ = 0.3 and τ = 30 as the optimal hyperparameters
for post-processing.

C. Detailed of Evaluation Metrics
C.1. Strict Evaluation Metrics

Beyond the Greedy Hungarian method, as utilized by [8]
and the main paper, another evaluation metric, the Strict
Hungarian method is implemented by [27]. Both methods
are derivatives of the algorithm introduced in [19]. The
Greedy Hungarian method involves segregating samples
into ‘New’ and ‘Old’ subsets based on their ground truth
labels, followed by separate accuracy calculations for each
subset. This approach offers a detailed view of the model’s
performance on both ‘New’ and ‘Old’ subsets. Conversely,
the Strict Hungarian method calculates the accuracy across
the entire query set upfront, thereby avoiding the potential
issue of a single cluster being allocated to both ‘New’ and
‘Old’ categories simultaneously. While the results in the
main paper is that of Greedy Hungarian, the experimental
results with Strict Hungarian is introduced in Table 4. Even
with the Strict Hungarian, NCD-DLT consistently outper-
form in ‘All’ accuracy in all scenarios.

C.2. Difference in obtaining ‘All’ accuracy

As discussed in the previous section, Greedy-Hungarian
and Strict-Hungarian differ in their evaluation approaches:
Greedy-Hungarian considers old and new classes sep-
arately, while Strict-Hungarian evaluates them together.
Consequently, ‘All’ accuracy in Greedy-Hungarian is cal-
culated as a weighted average of ‘Old’ and ‘New’ accuracy,
whereas Strict-Hungarian calculates accuracy by running
the algorithm once for all instances, without distinguishing
between old and new classes. These methods are suited to

different scenarios, and the choice between them depends
on the user’s specific needs. For instance, in a controlled
setting like a medical diagnosis tool, where old diseases are
well-documented but new or emerging diseases require spe-
cial attention, Greedy-Hungarian allows for a more focused
evaluation of the model’s performance on new categories
versus known ones. This approach is also beneficial when
performance on new categories is critical, such as in rec-
ommendation systems or fraud detection, where failing to
detect new categories can have high costs.

On the other hand, in generalized tasks like image clas-
sification for autonomous vehicles, where there is no clear
boundary between old and new categories, Strict-Hungarian
is more advantageous. Since it treats all categories equally,
it provides a holistic evaluation of model performance
across the entire dataset.

In this paper, we report the results of Greedy-Hungarian
in the main text, as it emphasizes ‘New’ accuracy and treats
new categories with special attention. However, Strict-
Hungarian remains important for more general image clas-
sification tasks. The experimental results using Strict-
Hungarian are presented in Table 4, demonstrating that even
under this evaluation method, NCD-DLT consistently out-
performs in ‘All’ accuracy across all scenarios.

D. Training Time Analysis
To verify the effectiveness of NCD-DLT in terms of com-

putational cost, we compare the training time with and with-
out knowledge distillation. Over 20 incremental stages and
10 epochs per stage, the total difference in training time be-
tween with and without knowledge distillation is 116 sec-
onds, averaging 0.58 seconds per epoch. This is a minor
increase given the significant performance improvements
achieved through the use of knowledge distillation losses.
Additionally, the graph-merging algorithm is highly cost-
effective, with the post-processing step requiring only 0.92
seconds on a CPU during the inference stage.



Original Dataset CIFAR10 CIFAR100 TinyImageNet

Model All Old New All Old New All Old New

GCD 0.2303 0.2536 0.2070 0.3125 0.3684 0.2566 0.3554 0.4128 0.2980
OCD 0.4985 0.9820 0.0150 0.3886 0.7296 0.0476 0.4028 0.7336 0.0720
GM 0.2137 0.2774 0.1500 0.2604 0.4124 0.1084 0.1904 0.2844 0.0964

BaCon 0.5815 0.8642 0.2988 0.4628 0.6292 0.2964 0.4766 0.5252 0.4280
MetaGCD 0.6375 0.3390 0.9360 0.3423 0.3414 0.3432 0.3222 0.4464 0.1980

Ours (NCD-DLT) 0.6419 0.8268 0.4570 0.5045 0.7426 0.2664 0.4730 0.6956 0.2504

Long-tailed (ρ = 20) CIFAR10 CIFAR100 TinyImageNet

Model All Old New All Old New All Old New

GCD 0.5582 0.3572 0.7484 0.1242 0.1660 0.0824 0.2623 0.2909 0.2353
OCD 0.4911 0.9686 0.0136 0.3434 0.6056 0.0812 0.3360 0.5928 0.0792
GM 0.1922 0.2762 0.1082 0.1993 0.3366 0.0620 0.1608 0.2244 0.0972

BaCon 0.4715 0.8294 0.1136 0.3009 0.3514 0.2504 0.3528 0.4732 0.2324
MetaGCD 0.4719 0.4354 0.5084 0.3805 0.4028 0.3582 0.2952 0.3396 0.2508

Ours (NCD-DLT) 0.7311 0.9256 0.5366 0.4375 0.6114 0.2636 0.4268 0.6024 0.2512

Long-tailed (ρ = 100) CIFAR10 CIFAR100 TinyImageNet

Model All Old New All Old New All Old New

GCD 0.5312 0.7586 0.6948 0.1500 0.1878 0.1122 0.2600 0.2708 0.2509
OCD 0.4830 0.9586 0.0074 0.2869 0.4934 0.0804 0.3012 0.5272 0.0752
GM 0.1603 0.1824 0.1382 0.1536 0.2404 0.0668 0.1468 0.2292 0.0644

BaCon 0.3817 0.4102 0.3532 0.3154 0.3838 0.2470 0.3126 0.3868 0.2384
MetaGCD 0.5670 0.1866 0.9474 0.3209 0.3362 0.3056 0.2750 0.3308 0.2192

Ours (NCD-DLT) 0.5605 0.8568 0.2642 0.3342 0.4144 0.2540 0.3412 0.4852 0.1972

Table 4. Experimental results for original and long-tailed datasets with Strict Hungarian. The best results are marked in bold, and the
second best results are marked by underline.

We also compare the training and testing times on
CIFAR-100 with ρ = 100, as shown in Table 5. NCD-DLT
demonstrates relatively low total training time while main-
taining superior performance. In particular, when compared
to the comparable method, MetaGCD, which requires sev-
eral hours for both training and testing, NCD-DLT is signif-
icantly lighter in terms of both training and inference.

E. Experimental result with k-means cluster-
ing on test set

Existing NCD works, such as GCD, MetaGCD, and Ba-
Con, assume that all test samples are available and that the
total number of classes is known; thereby, they utilize k-
means clustering in the inference step. However, as dis-
cussed in Section 5.1, the experimental results reported in
the main content are based on tests conducted in an on-
the-fly manner, which reflects a more realistic scenario than
running k-means clustering for all test samples. While we
highlight the efficacy of our inference approach, we also en-
sure performance comparison under the same scenario used
in the literature, implementing k-means clustering by as-
suming all the test samples are avaiable simultaneously.

The results are shown in Table 6 and Table 7. Similar to
the on-the-fly inference approach as shown in Tables 2 and
4, NCD-DLT is comparable or outperforms in all scenarios
in terms of ‘All’ accuracy. This superiority is attributed to
NCD-DLT’s ability to extract distinct features for different
classes, and the integration of the Hash Hamming Graph
with the graph-merging algorithm, which provides a more
precise measurement of the total number of classes, as dis-
cussed in Section 5.3.

F. Comparison on Problem Setting

In Figure 10, we visualize different scenarios to highlight
the difficulty of the suggested scenario in real-world cir-
cumstances. For example, (a) a scenario where the class dis-
tribution is imbalanced within the training data, but training
is conducted in a static setting as assumed in BaCon [1]; (b)
the inference stage of NCD, aiming to classify both known
and novel classes accurately; (c) a dynamic training sce-
nario with a uniform class distribution and data provided
incrementally, as assumed in GM [33] and [29]; (d) a chal-
lenging scenario with an imbalanced data distribution and
data provided incrementally at random (NCD-DLT). This



Time Comsumption (s) Initial Training Dynamic Training Total Training time Inference

GCD 1227 868 2095 63.15
GM 354 346 700 39.54

BaCon 4401 3751 8152 64.14
MetaGCD 452 83544 83996 2921.86
NCD-DLT 1187 4505 5692 48.06

NCD-DLT (w/o Distillation) 1187 4389 5576 48.06

Table 5. Comparison of training and testing times (in seconds) for NCD-DLT and other methods on CIFAR-100 with ρ = 100. NCD-
DLT demonstrates competitive performance with significantly lower computational costs, particularly when compared to MetaGCD, which
requires substantially more time for both training and testing.

Original Dataset CIFAR10 CIFAR100 TinyImageNet

Model All Old New All Old New All Old New

GCD 0.3097 0.3178 0.3016 0.3873 0.4300 0.3446 0.4290 0.4512 0.4068
OCD 0.5198 0.6786 0.3610 0.4702 0.6690 0.2714 0.5506 0.7676 0.3336

BaCon 0.7561 0.8642 0.6480 0.5426 0.6572 0.4280 0.4400 0.4672 0.4128
MetaGCD 0.8983 0.8768 0.9198 0.3940 0.4074 0.3806 0.3856 0.4372 0.3340

Ours (NCD-DLT) 0.9714 0.9770 0.9658 0.6002 0.8388 0.3616 0.5364 0.7288 0.3440

Long-tailed (ρ = 20) CIFAR10 CIFAR100 TinyImageNet

Model All Old New All Old New All Old New

GCD 0.8726 0.8070 0.9382 0.2190 0.2298 0.2082 0.3087 0.3393 0.2797
OCD 0.2938 0.3784 0.2092 0.4464 0.5524 0.3404 0.5206 0.6672 0.3740

BaCon 0.7171 0.8272 0.6070 0.4077 0.4790 0.3364 0.4282 0.4960 0.3604
MetaGCD 0.7575 0.7350 0.7800 0.4666 0.4978 0.4335 0.3426 0.3536 0.3316

Ours (NCD-DLT) 0.8653 0.9212 0.8094 0.4926 0.6790 0.3062 0.4848 0.6468 0.3228

Long-tailed (ρ = 100) CIFAR10 CIFAR100 TinyImageNet

Model All Old New All Old New All Old New

GCD 0.8800 0.8286 0.9314 0.2273 0.2404 0.2142 0.2954 0.3146 0.2792
OCD 0.3619 0.4370 0.2868 0.3931 0.4658 0.3204 0.4704 0.5772 0.3636

BaCon 0.5634 0.5798 0.5470 0.4052 0.4824 0.3280 0.4072 0.4856 0.3288
MetaGCD 0.8470 0.7494 0.9446 0.4711 0.4882 0.4540 0.3212 0.3164 0.3260

Ours (NCD-DLT) 0.9008 0.9372 0.8664 0.4459 0.5502 0.3416 0.3928 0.5272 0.2584

Table 6. Experimental results with k-means clustering for original and long-tailed datasets with Greedy Hungarian. The best results are
marked in bold, and the second best results are marked by underline.

last scenario reflects real-world conditions where unlabeled
new data is continuously acquired, the class distribution is
imbalanced, and new classes keep emerging, such as in E-
commerce.



Original Dataset CIFAR10 CIFAR100 TinyImageNet

Model All Old New All Old New All Old New

GCD 0.2303 0.2594 0.2012 0.3193 0.3538 0.2848 0.4150 0.4324 0.3976
OCD 0.5198 0.6786 0.3610 0.4611 0.6596 0.2626 0.5230 0.7600 0.2860

BaCon 0.5815 0.8642 0.2988 0.4664 0.6016 0.3312 0.4266 0.4492 0.3960
MetaGCD 0.6438 0.3678 0.9198 0.3295 0.3356 0.3234 0.3768 0.4264 0.3272

Ours (NCD-DLT) 0.7267 0.8938 0.5596 0.5124 0.7592 0.2656 0.4812 0.7156 0.2468

Long-tailed (ρ = 20) CIFAR10 CIFAR100 TinyImageNet

Model All Old New All Old New All Old New

GCD 0.5466 0.3490 0.7442 0.1423 0.1436 0.1410 0.2582 0.3061 0.2131
OCD 0.2961 0.3620 0.2302 0.4433 0.5524 0.3342 0.5026 0.6576 0.3476

BaCon 0.4732 0.8272 0.1192 0.3272 0.4012 0.2532 0.3874 0.4636 0.3112
MetaGCD 0.4802 0.4922 0.4682 0.3705 0.4126 0.3284 0.2966 0.3096 0.2836

Ours (NCD-DLT) 0.7224 0.9212 0.5236 0.4470 0.6454 0.2486 0.4414 0.6056 0.2772

Long-tailed (ρ = 100) CIFAR10 CIFAR100 TinyImageNet

Model All Old New All Old New All Old New

GCD 0.5520 0.5226 0.7364 0.1586 0.2314 0.1000 0.2553 0.2792 0.2350
OCD 0.3357 0.4370 0.2344 0.3860 0.4658 0.3062 0.4608 0.5704 0.3512

BaCon 0.3823 0.4114 0.3532 0.3321 0.4318 0.2124 0.3490 0.4352 0.2628
MetaGCD 0.5378 0.3236 0.7520 0.3808 0.3850 0.3766 0.2766 0.2624 0.2908

Ours (NCD-DLT) 0.5035 0.7564 0.2506 0.3657 0.4746 0.2568 0.4338 0.6140 0.2636

Table 7. Experimental results with k-means clustering for original and long-tailed datasets with Strict Hungarian. The best results are
marked in bold, and the second best results are marked by underline.

Figure 10. Filled circles represent labeled datasets, while empty circles denote unlabeled instances, with different colors indicating distinct
classes. Within the Novel Category Discovery (NCD) framework, some classes’ labels might never be provided during training, as illus-
trated by the orange background, whereas known classes have been trained at least once with labeled samples.


