
Enriching Local Patterns with Multi-Token Attention
for Broad-Sight Neural Networks

(Supplementary Material)

Hankyul Kang
Ajou University

hankyulkang1997@gmail.com

Jongbin Ryu
Ajou University

jongbinryu@ajou.ac.kr

1. Architecture detail
We describe the model configuration of the proposed

MAP with details in Tab. 1. There are several hyper-
parameters in MAP, such as the scale level of merged fea-
tures s, the dimension of the merged feature channel D, the
number of class tokens per group N, and the number of to-
ken groups G. For simplicity, we fix D as 384 and s as 3 and
set the pair of token and group parameters (N, G) to (2, 4)
for the small model and (4, 2) for the large model in Tab.3
of the manuscript. As explained in Sec.4 of the paper, this
design choice maximizes the likelihood of capturing local
patterns with little computational budget. Based on this de-
sign principle, we determine D, s, N, and G as the above
optimal values.

2. Experimental setup
2.1. Image classification

Tab. 2 provides our training hyper-parameters used to
train multiple backbone architectures on different datasets.
Except for ResNet, we adhere to the original design used
to train backbone networks for the ILSVRC-2012 pretrain-
ing task. We refer to the A2 configuration in [24] for our
hyperparameter setting. We utilize the standard fine-tuning
receipt from the [21] for our downstream tasks.

2.2. Downstream task

Object detection and Instance segmentation. Mask R-
CNN [17] and Cascade Mask R-CNN [1] are used as object
detection models. We use the MMDetection [2] framework
for training the detection models on the MS-COCO 2017
dataset [13]. We evaluate our model following ×1 schedule
training receipt: AdamW [15] optimizer, 32 batch size, 12
epochs, 0.1 weight decay, 1e-4 learning rate, and a step-wise
learning rate scheduler.

Semantic segmentation. Semantic FPN [10] and Uper-
Net [25] are used in our implementation. We use the MM-

Table 1. Details of MAP module variants. The input size is deter-
mined by the total sum of hidden dimensions of every stage.

Hyper-param ResNet ConvNeXt MaxViT ResMLP
[6] [14] [23] [20]

input size 3904 1344 1344 1536
hidden size (D) 384 384 384 384
MLP size 1536 1536 1536 1536
heads 12 12 12 12
#group (G) 2 4 4 2
#token (N) 4 2 2 4

Params 13M 19M 19M 12M
FLOPs 0.4G 0.4G 0.4G 0.2G

Table 2. Summary of ILSVRC-2012 training hyper-parameters.
ViT includes DeiT, PiT, and PVT.

Hyper-param ResNet ConvNeXt ViT ResMLP
[24] [14] [21] [20]

train res. 224 224 224 224
test res. 224 224 224 224
test crop ratio 0.95 0.875 0.95 0.95
epoch 300 300 300 350

batch size 2048 4096 1024 1024
criterion BCE CE CE CE
optimizer LAMB AdamW AdamW LAMB
lr 5e-3 4e-3 1e-3 5e-3
lr decay cosine cosine cosine cosine
weight decay 0.02 0.05 0.05 0.2
warmup epochs 5 20 5 5

h.flip ✓ ✓ ✓ ✓
rand augmentation 7/0.5 9/0.5 9/0.5 9/0.5
cutmix alpha 1.0 1.0 1.0 1.0
mixup alpha 0.1 0.8 0.8 0.8
erasing prob. 0.0 0.25 0.25 0.25

ema - ✓ - -

Segmentation [3] framework for training the segmentation
model on the ADE20K dataset [28]. We evaluate our model
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Table 3. Ablation study on the baseline networks used in the Sec.3
of the manuscript. We train each model with a distinct pooling
layer using the same training receipt as shown in Tab. 2.

Model GAP CAP

Top-1
Acc.(%)

Param.
(M)

Top-1
Acc.(%)

Param.
(M)

ResNet50 79.8 25.6 80.6 59.1
DeiT-S 80.4 22.0 81.0 52.9

following ×1 schedule training receipt: AdamW [15] op-
timizer, 32 batch size, 40000 iterations, 1e-4 weight de-
cay, 2e-4 learning rate, and polynomial decay learning rate
scheduler.

3. Analysis detail
In this section, we provide the measure of feature vari-

ance and dead neurons utilized in Sec. 3 of the manuscript
in detail. We compute feature variance as:

varch(F ) =
1

HW

H∑
h

W∑
w

var(F [:, h, w]),

varsp(F ) =
1

C

C∑
c

var(F [c, :, :]),

(1)

where F ∈ RC×H×W denotes the feature map with height
H , width W , and channel dimension C. We determine the
average number of dead neurons by counting the number of
zero activation units after the ReLU [16]. For our empirical
analysis, we use two baseline networks (ResNet50, DeiT)
with two different pooling layers (GAP and CAP). We train
both networks on the ImageNet dataset by replacing the last
pooling layer. The results of the two baseline networks are
shown in Tab. 3.

4. Further experimental results
4.1. Image classification with various network scales

We apply our MAP to 10 different baseline networks
to show its benefits in various network scales. For Faster-
ViT [5], we train it without a sharpness-aware minimiza-
tion loss for fair comparison with other networks. Tab. 4
indicates that ours works well with various network scales.
In particular, our MAP demonstrates significantly improved
performance compared to the scale-up version of baseline
networks while using less resource overhead.

4.2. Scalability on input resolution

The suggested MAP performs effectively with scaling
methods for high-resolution input images, which is crucial

Table 4. ImageNet Top-1 Acc on Rendition (R), V2, Real, and Val
label. We report the network’s throughput on an RTX 3090 GPU.
We use public checkpoints to evaluate baseline networks. We com-
pare the baseline, its up-scaled network, and our MAP method. †:
denotes our reproduced results; otherwise, result of original paper.

ImageNet Top1 Acc. (%)
Network Throughput

(img/s)
Param.

(M)
FLOPs

(G) R V2 Real Val

MobileNetV1† 4066 4.2 0.6 30.3 58.8 78.8 71.3
MAP (Ours) 3734 4.9 0.6 31.9 60.9 80.9 73.4

ResNet50 3334 25.6 4.1 38.2 67.7 85.4 79.8
50 → 152 1446 60.2 11.5 41.5 71.0 86.5 81.8
MAP (Ours) 2819 38.0 4.5 45.9 70.2 86.7 81.8

DeiT-S 2611 22.1 4.3 42.3 68.5 85.7 79.8
S → B 1011 86.6 16.9 44.9 71.2 86.8 81.8
MAP (Ours) 2287 36.9 4.5 46.6 71.0 87.3 81.8

PiT-S 2580 23.5 2.4 43.9 69.9 86.3 80.9
S → B 935 73.8 10.5 44.1 71.7 86.7 82.0
MAP (Ours) 2254 36.2 2.6 47.5 70.8 87.3 81.9

ResMLP-S24 1926 30.0 6.0 40.7 67.9 85.3 79.4
S24 → S36 1310 44.7 8.9 43.0 68.4 85.6 79.7
MAP (Ours) 1623 43.3 6.2 44.9 69.7 86.8 81.0

ConvNeXt-T 2040 29.0 4.5 47.2 71.0 87.3 82.1
T → S 1257 50.0 8.7 49.6 72.4 88.1 83.1
MAP (Ours) 1665 47.8 4.9 48.7 72.5 88.0 83.3

ConvNeXt-S 1257 50.0 8.7 49.6 72.4 88.1 83.1
S → B 886 89.0 15.4 51.3 73.7 88.3 83.8
MAP (Ours) 1111 82.8 9.2 52.0 73.8 88.6 84.1

MaxViT-T 1009 30.9 5.4 48.8 72.9 88.0 83.6
T → S 654 69.0 11.7 50.9 73.9 88.5 84.5
MAP (Ours) 907 50.0 5.8 51.2 74.3 88.8 84.3

MaxViT-S 654 69.0 11.7 50.9 73.9 88.5 84.5
S → B 361 120.0 23.4 52.2 74.3 88.6 85.0
MAP (Ours) 613 100.9 11.8 54.1 74.8 88.9 85.0

FasterViT-3† 1087 159.5 18.5 45.3 72.4 87.2 83.1
MAP (Ours) 970 187.0 18.8 49.3 74.0 88.1 84.2

for recent visual recognition tasks. As shown in the ‘accu-
racy vs. resolution’ plots of Fig. 1, the proposed method
delivers more performance gains as the input image’s reso-
lution increases. We assume that the reason for these results
is that as the input resolution grows, there is more local in-
formation, but the current GAP is unable to learn it well.

4.3. Downstream tweak

We perform an ablation study on the proposed tweak
for the downstream task in Tab. 5. Without the proposed
tweaks, adding the final pooling layer results in a decrease

Table 5. Ablation study on the dense prediction task. The perfor-
mances on downstream tasks are greatly increased when our ar-
chitectural tweak for dense prediction is used.

Pooling Tweak CLS
Acc.(%)

DET
mAP(%)

SEG
mIOU(%)

GAP - 77.0 38.1 37.1
CAP - 78.5 37.7 36.6
CAP ✓ 78.5 39.2 37.7

MAP ✓ 80.7 40.1 39.5
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(a) Comparison on the performance of GAP, CAP, and MAP with regard to the latency and input image resolution.
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(b) Comparison on the performance of MAP-ResNet50, ResNet101, and ResNet152 with regard to the latency and input image resolution.

Figure 1. Experimental study of extensive comparison of the proposed MAP with other pooling methods and networks. In the left figures,
larger points signify that high input resolution is employed. (a) We confirm that, compared to GAP and CAP, MAP achieves much higher
performance while using fewer resources. (b) MAP-ResNet50 shows better performance compared to vanilla ResNet with deeper layers,
and in particular, as the resolution increases, MAP performs better.

Table 6. Model configurations used for scale-up networks of
ResNet. These series of scale-up networks are used to compare
the proposed MAP with SOTA networks in Tab. 7. MAP-R50 in-
dicates ResNetD-50 with our MAP. #L and #C denote the number
of layers and channels in each stage.

Stage MAP-ResNet50 MAP-ResNet75 MAP-ResNet101

#L #C #L #C #L #C

1 3 64 4 64 4 84
2 4 128 5 128 5 168
3 6 256 13 320 21 336
4 3 512 3 640 3 672

of 0.3% and 0.5% for segmentation and detection tasks,
despite an increase in classification accuracy. However,
with the proposed tweak, CAP improves the performance
of baseline network detection and segmentation networks
by 1.1% and 0.6%, respectively. Moreover, utilizing MAP
boosts the accuracy of detection and segmentation networks
by an additional 0.9% and 1.8%, respectively. As a result,
the proposed tweak with MAP improves the performance
of detection and segmentation as well as the classification
task.

4.4. Distillation

Experiment setup. The configuration of our ResNet-
based models in Tab. 7 is illustrated in Tab. 6. We augment
our ResNet-based model by channel dimensions concur-
rently with the number of layers and tweaks from ResNet-
D [7], a strategy that is widely used in current mod-
els [18, 27]. Other than these model augmentation, no addi-
tional architecture techniques (such as SE-module [9]) are
used in our model.

CNN Distillation from ViT. Most previous studies [4,21,
22] distill ViT from the CNN model using the distillation to-
ken. Initially, network learning utilizing tokens was devel-
oped in ViT; therefore, the distillation direction (CNN →
ViT) has been a prevalent strategy. However, the proposed
MAP uses class tokens on the last pooling layer, so we ap-
ply the distillation method in which ViT teaches CNN, as
shown in Tab. 7. It demonstrates that the proposed MAP has
the potential to distill the CNN from knowledge of the ViT.
It is worth noting that the proposed distillation approach has
the benefit that it can be applied to various network architec-
tures. Tab. 7 shows the distillation with our MAP achieves



Table 7. Experimental study on knowledge distillation and scale-up architectures with the proposed MAP. Υ denotes a network trained by
knowledge distillation from VOLO-D1 [26].

Model ImageNet Top-1 acc. (%) Throughput (img/s) FLOPs (G)

224 320 224Υ 320Υ 224 320 224 320

MAP-ResNet50 81.8 82.9 82.5 83.7 2557.1 1233.4 5.6 11.3
MAP-ResNet75 82.5 83.5 83.4 84.3 1587.0 771.5 10.3 20.8
MAP-ResNet101 82.9 83.9 83.7 84.4 935.3 454.2 15.8 32.2

Table 8. Experimental result on the transfer learning. We fine-tune
our MAP methods pre-trained on ImageNet to small datasets.

Method IN1K
(Acc. %)

C10
(Acc. %)

C100
(Acc. %)

Cars
(Acc. %)

Throughput
(img/s)

Convolution: ResNet50 [6]

GAP [6] 79.8 98.2 88.7 87.8 3401
CAP [22] 80.6 98.6 89.6 91.3 3176
MAP 81.8 98.7 90.3 91.5 2819

Transformer: PiT-S [8]

GAP [6] 79.8 98.8 90.1 90.4 2580
CAP [22] 81.2 99.0 91.0 90.2 2494
MAP 81.9 99.0 91.3 90.5 2254

competitive performance regarding accuracy and resource
usage in most cases.

4.5. Transfer Learning

We finetune the pre-trained networks (i.e. ResNet50 [6],
and PiT-S [8]) to small datasets such as CIFAR10/100 [12],
and Stanford-Cars [11] to examine their ability to general-
ize on such datasets. In Tab. 8, the proposed MAP improves
the accuracy for all small datasets. For instance, ResNet50
with MAP outperforms the baseline by about 0.5/1.5% in
CIFAR10/100. Similarly, we observe a consistent perfor-
mance improvement for PiT in all datasets. This finding
verifies that replacing GAP with MAP improves general-
ization.

Table 9. Comparison of MAP vs GA. We report top-1 accuracy of
300 epochs on ImageNet-1K. †: GA are the original results [19].

Network Pooling Throughput
(img/sec)

FLOPs
(G)

∆
(↓)

Top-1
Acc. (%)

∆
(↑)

ResNet50 GA† [19] 2145 5.2 - 82.5 -
MAP 2127 5.4 +0.2 82.9 +0.4

ViT-S GA† [19] 2289 4.2 - 80.9 -
MAP 2287 4.5 +0.3 81.8 +0.9

4.6. Experimental Comparison with GA

We further compare ours with the GA method [19],
which is the baseline for our approach. Tab. 9 compares our
MAP to the original results of the GA method [19]. It shows

that our MAP works well compared to the GA method using
manageable extra resources.
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