Supplementary Material for Label-Augmented Dataset Distillation

A. Sub-Sampling Hyperparameter N and R

We perform the study on LADD-GLaD (MTT) using the Im-
ageNette dataset at 5 IPC. It aims to determine the opti-
mal size (R) and the number (V) of image sub-samplings.
We test four different sizes R and quantities NV, validating
LADD-GLaD (MTT) with 5-CAE. Tab. S1 shows that an in-
crease in IV correlates with improved overall accuracy. This
is expected, as a higher number of soft labels in a dense la-
bel encompasses more information. However, increasing N
also results in greater memory inefficiency. For instance,
comparing N = 5 with N = 7, the performance gain is
a mere 1.1%, but the overhead rises by 94%. Therefore,
balancing the performance-efficiency trade-off is crucial.
Hence, we select NV = 5 for our model, considering both
performance and efficiency.

R represents the size of the sub-image. If R is too small,
vital objects representing the target class may be absent in
most sub-images. This results in performance degradation
due to information loss. Conversely, if R is too large, label
augmentation efficiency drops because of redundant infor-
mation in each sub-image. Our observations indicate that
R = 62.5% yields the most accurate results. Therefore, we
choose R = 62.5% for our model.

B. Fair Comparison Settings for RDED

RDED [32] introduces an efficient approach for distilling
large-scale datasets. It achieves a remarkable 42% top-1
validation accuracy with ResNet-18 [14] on the ImageNet-
1K dataset [5]. RDED first generates diverse and realistic
data through an optimization-free algorithm backed by v-
information theory [37], which is equivalent to the distilla-
tion step. In the deployment stage, the method augments the
distilled images and computes the corresponding soft labels
from the teacher model. Then, it trains the test model using
the augmented images and soft labels.

Despite the remarkable performance of RDED, we iden-
tified that the method does not align with the purpose of
dataset distillation. Dataset distillation aims to distill the
knowledge from a given dataset into a terse data sum-
mary [25]. However, RDED uses a teacher model for soft
label prediction of augmented images in the deployment
stage. Specifically, RDED generates an unlimited number
of images and labels via image augmentation that fully ex-
ploits the teacher model’s knowledge. Thus, RDED aligns
more with knowledge distillation rather than dataset distil-
lation in the deployment stage.

Therefore, we assess the performance of RDED while
ensuring it complies with the purpose of dataset distillation

by eliminating the labeling process that relies on the teacher
model during the deployment stage.

C. Performance Degradation in TESLA

TESLA consistently depicts low accuracy in both Tab. 3 and
Tab. 5. Although we used the official code and tuned the
hyperparameters, we could not successfully train TESLA.
Thus, we investigated the reason for this result.

TESLA introduces a method to reduce the high GPU
memory issue arising from the bi-loop nested optimization
problem in MTT [2]. Through a formulaic improvement,
it reduces unnecessary computation graphs while achiev-
ing the same objective. Specifically, TESLA claims that
the gradient for each batch image only depends on the iter-
ation involving the images. Thereby, the model can remove
the computation graph after computing the gradient for each
image.

We found an oversight in TESLA’s formulation: it does
not consider the inner-loop model parameters as dependent
variables of the image from different iterations. This means
TESLA simplifies the objective of MTT by ignoring the
feedback from different training iterations to reduce compu-
tations. This explains why TESLA is incapable of achieving
a similar high accuracy to MTT in Tab. 3. Detailed proof
can be found in Sec. E.

D. Experiments on Small Dataset: CIFAR-10

We evaluate LADD on the small-sized image dataset,
CIFAR-10 [18]. We adopt the same hyperparameters (i.e.,
R and N) defined in Sec. 4.1, with an image size of 32 x 32.
We apply LADD to the distilled dataset from DATM [13],
which is the current state-of-the-art method for small-sized
datasets. To account for the small-sized image, we use a
3-layer convolutional network (ConvNetD3) for both the
distillation and deployment stages. Tab. S2 reports the de-
ployment stage performance at 1 and 10 IPC. The results
demonstrate that our method improves DATM and achieves
the highest performance compared to other methods. There-
fore, we conclude that LADD also boosts performance in
small-sized datasets.

E. Mathematical Analysis on TESLA

In this section, we derive the mathematical differences be-
tween TESLA and MTT to explain the performance differ-
ence in Tab. 3 and Tab. 5.



N
R (pixels) 3 3 7 0 Avg.
50.0% (64) 47.0+1.0 53.4+0.9 55.0+0.7 56.3+0.8 | 52.9+0.9
62.5% (80) 48.8+1.3 53.9+0.9 552+1.3 54.2+1.0 | 53.0+1.1
75.0% (96) 489409 52.1+1.5 51.4+1.5 52.0+1.2 | 51.1%1.3
88.5% (128) 48.4+1.8 50.5+1.2 50.9+1.1 51.6+1.0 | 50.4+1.3
Avg. | 483+13 52511 53.1x12 53.5+1.0
Overhead (%) |75 20.7 40.2 66.3 |

Table S1. Ablation Study on Sub-Image Size R(%) and the Number of Axis Split N. Each accuracy indicates LADD-GLaD (MTT)
results on ImageNette at 5 IPC. Underline depicts chosen parameter for other experiments.
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DATM [13] 46.9+0.5 66.8+0.2 then further expand the Eqn. S4 as:
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Table S2. Performance on CIFAR-10 Dataset. DATM' indi- T—1
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E.1. Objective Function of MTT

We briefly review the mathematical expression of MTT to
understand the oversight in TESLA. MTT defines the L,
through the parameter distance:
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where 607 and 0}, ), are the model parameters trained on
source dataset D, for t and ¢t + M steps, respectively. Start-
ing from the 6;, MTT trains the model for i € [0,7") steps
on the distilled dataset D following the SGD rule and cross-
entropy loss. The trained parameter is denoted as:

(SD)

Lsim = 041 — 0 a3,
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where X is sub-batch of D and E(étH; Xz) is the cross-
entropy loss. (3 indicates the learning rate for the inner-loop.
We can expand 6,7 as:

Orir = 07 — BVoL(07; Xo) — BVl (Ory1; X1) —

— BVl (Bryr—1; Xr_1). (S3)

where C' = [|6;f —0;, ), ||3 is a constant and a negligible term
in the gradient computation. For convenience, we represent

G= Z;r 01 V9€(9t+'u z)

E.2. Cause of Performance Degradation

TESLA claims two points. First, the elements of the first
term G only involve the gradients in a single batch and thus
can be pre-computed. Second, the computation graph of
Vol (HHZ, ;) is not required in the derivative of any other
batch X_;. Based on these points, TESLA computes the
gradient for each batch X as:
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Since Eqn. S6 can be computed for each batch, TESLA
asserts that the memory requirement can be significantly
reduced by not retaining the computation graph for all
batches.



Here, we found the missing Point iNn the second claim.
The computation graph of Vy¢(0;4;; X;) is required in the

derivative of any other batch X;_;. For example, we can
compute the gradient for X1 _o from the Eqn. S5:
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We can omit other Vgﬁ(étﬂ»;f(i) where ¢ < T — 2
because they are independent of Xr_o. However, the
term Vol(Oprr—1; XT_l) cannot be ignored. Following
Eqgn. S2, QAHT,l depends on the synthetic image Xp_o.
The derivative for ét+T_1 with respect to the image is:
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Then, we can compute the derivative for the term
Vol(Oryr—1; X1-1):
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Finally, the Eqn. S7 becomes:
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where A = 23(0;,,, — 0;)" + 262G™. It is obvious that
the computation graph of Vgé(éHT,l; )N(T,l) is required
to compute the gradient for X7 5. In general, the correct
gradient for each batch X is:
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J=i

Vol(Orsr—2; X7_2).

Due to the product term in Eqn. S11, the computation
graphs for other steps are required to compute the gradient
of X i

In conclusion, the assumption in Eqn. S6 of TESLA ne-
glects that the X; affects the other batch gradients. We also
empirically confirm that the gradients for distilled images
computed on MTT and TESLA are not identical when all
other parameters (such as input distilled images, starting pa-
rameters, and learning rates) are equal. We conjecture that
the low performance of TESLA is due to this observation.

F. Visualization of Sub-Samples

Tench

Church

Figure S1. The result of sub-sampling of MTT and GLaD. Vi-
sualization of the sub-sampling results for the Tench and Church
classes from the Imagenette dataset, distilled using the MTT and
GLaD methods. For each sample, the image on the left is the orig-
inal distilled image, and the images on the right are the sub-images
after sub-sampling. The original images selected are the first index
images from each class.

Fig. S1 demonstrates examples of the results after apply-
ing sub-sampling to the distilled dataset. After distilling the
Imagenette dataset using the MTT and GLaD methods, the
images from the Tench and Church classes were extracted,
and these are the original images shown on the left of each
sample. Sub-sampling is then performed with hyperparam-
eters set to N =5 and R = 62.5%, starting from the top-left
corner of the original image. As a result, 25 sub-images are
generated for each original image, which are displayed on
the right of each sample.

G. Future Works

We aim to quantize the LADD to reduce storage require-
ments and improve training efficiency. Furthermore, we
plan to explore the application of LADD in tasks that re-
quire higher computational costs, such as vision-language
models. We will optimize the balance between dense and
hard labels through ablation studies or by learning a weight
parameter. Additionally, we intend to experiment with alter-
native static sub-sampling methods to enhance overall per-
formance and scalability across diverse tasks.
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