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Figure 1. Overview of the tokenization process. A parameterized CAD sketch is represented by a set of primitives, each comprising a
sequence of 8 tokens. The first primitive token specifies the primitive type, followed by quantized primitive parameters. As depicted in the
example, the parametric value 0.0 is mapped on the bin (−0.015625, 0] due to the 6-bit quantization. Additional tokens are padded with
the 0 token value. The primitive sequence is initiated with the start token and completed by the end token.

This supplementary material includes various details that
were not reported in the main paper due to space constraints.
To demonstrate the benefit of the proposed PICASSO, we
also expand our experimental evaluation.

1. System Details
We start by reiterating details of the tokenization strategy

followed by PICASSO. This section also discusses the ef-
fect of the multiscale loss Lml2 and reports inference times
for our proposed method and that of [5].

1.1. Tokenization

For our problem formulation, each primitive pi is ex-
pressed as a collection of 8 tokens {tji}j∈[1,8] with tji ∈
[0, 72] that capture both types and quantized primitive pa-
rameters. A detailed description of token types and corre-
sponding token values is shown in Table 1. In Fig. 1, we

Token Value Token Description

0 Padding
1 Start
2 End
3 Arc
4 Circle
5 Line
6 Point
[7, 70] Quantized primitive parameters
71 Construction Primitive
72 Non-Construction Primitive

Table 1. Description of tokens used in our problem formulation.

present an overview of the tokenization process.
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1.2. Multiscale l2 loss.

Figure 2. Illustration of the Lml2 for visually supervised CAD
parameterization. The immediate support between the predicted
rendering and the imprecise hand-drawn sketch image increases at
lower resolutions. This mechanism compensates for noisy gradi-
ent estimates due to partial overlap at higher resolutions.

Rendering self-supervision via the proposed Sketch Ren-
dering Network (SRN) is facilitated by a multiscale l2 loss
denoted by Lml2. The multiscale l2 loss enables effective
rendering self-supervision for precise as well as hand-drawn
sketch images. Even though discrepancies are inevitably in-
troduced due to the imprecise nature of hand-drawn lines,
the loss at a lower resolution can still provide an informa-
tive learning signal. A visualisation of image pyramids con-
structed for Lml2 computation is presented in Fig. 2. Qual-
itative results of renderings produced by SRN when trained
with different image-level losses are given in Fig. 3. We
observe that utilizing the multiscale l2 loss during train-
ing, results in sharper images and accurate rendering of
finer details. Improved SRN renderings in turn lead to the
computation of informative gradients that enable rendering
self-supervision and zero / few-shot learning scenarios for
PICASSO, as demonstrated in Sections 5.2 of the main pa-
per.

1.3. Inference Time Comparison

In Table 2, we report inference time in seconds for
our method and that of [5]. We observe that our Sketch
Parametrization Network (SPN) enables faster inference. In
contrast, Vitruvion [5] is an autoregressive method that re-
quires multiple forward passes per sample, leading to in-
creased total inference time.

Method Inference (sec)

Vitruvion [5] 1.1005
SPN-PICSASSO 0.1101

Table 2. Inference times per-sample for our proposed method and
that of [5]. Results are computed for a batch size of 1.

Figure 3. Sketch renderings by the SRN-PICASSO, trained using
different image-level losses. Training SNR via a multiscale l2 loss
results in sharp CAD sketch renderings. In contrast, employing
binary cross-entropy or a standard l2 loss during the learning pro-
cess may lead to renderings that are blurred, lack fine details, or
have disconnected primitives.

2. Metrics

The metrics utilized for quantitative evaluation are de-
tailed as follows.

Acc: To enable the computation of parameter-based met-
rics, the permutation π̂ ∈ Πn of the predicted w.r.t the
ground truth is recovered with bipartite matching. Accu-
racy is computed as:

Acc =
1

TAcc

nz∑
i=1

8∑
j=1

1[tji > 0] · 1[tji = t̂jπ̂(i)] (1)

where t̂jπ̂(i) and tji and the predicted and ground truth token
sequences respectively, nz = |{pz}| is the number of prim-
itives for the z’th test sample, TAcc is the number of non-
padding tokens in the ground truth sequence or formally
TAcc =

∑nz

i=1

∑8
j=1 1[t

j
i > 0], and 1[.] is the indicator

function.

ParamMSE: Parametric mean-squared error (ParamMSE)
considers solely the parameter tokens of predicted primi-
tives, thus type, padding, and construction tokens are ex-
cluded. Formally,



ParamMSE =
1

TMSE

nz∑
i=1

8∑
j=1

1[tji > 6]·1[tji < 71]·(tji−t̂jπ̂(i))
2

(2)
where TMSE =

∑nz

i=1

∑8
j=1 1[t

j
i > 6] · 1[tji < 71] is the

number of parameter tokens in the ground truth sequence.

ImgMSE: The pixel-wise Mean Squared Error ImgMSE
comprise two MSE terms. Formally:

ImgMSE =
1

2NF

w·h∑
k=1

1[Xk = 1] · (X̂k −Xk)
2

+
1

2w · h

w·h∑
k=1

(X̂k −Xk)
2

(3)

where NF =
∑w·h

k=1 1[Xk = 1] is the number of foreground
pixels.

CD: To compute bidirectional Chamfer Distance (CD), we
form a set of foreground pixel coordinates ζ ∈ {(i, j) | 1 ≤
i ≤ h, 1 ≤ j ≤ w} for both the ground truth and predicted
explicit renderings. The result is the sets Z = {ζn}

Nf

n=1

and Ẑ = {ζ̂n}
N̂f

n=1 where Nf and N̂f is the number of
foreground pixels for ground truth and prediction explicit
renderings respectively. Bi-directional chamfer distance is
given by:

CD =
1

2N̂f

N̂f∑
n=1

min
ζk∈Z

∥ζ̂n−ζk∥22 +
1

2Nf

Nf∑
n=1

min
ζ̂k∈Ẑ

∥ζn−ζ̂k∥22,

(4)

3. Implementation Details for Comparative
Analysis

To evaluate the effectiveness of the proposed PICASSO,
comparisons are performed in two settings; (1) For few-
shot w.r.t. the state-of-the-art autoregressive method of Vit-
ruvion [5] and a non-autoregressive baseline based on a con-
volutional ResNet34 backbone and (2) for zero-shot w.r.t
the Primitive Matching Network of [2]. The proposed SRN
is also contrasted to the differentiable renderer DiffVG [3].
This section will expand on implementation details related
to these methods.

Vitruvion: We train Vitruvion [5] on the SketchGraphs [4]
dataset using the publicly available implementation1. For
autoregressive CAD parameterization, we select the next to-
ken via argmax instead of the nucleus sampling used for

1https://github.com/PrincetonLIPS/vitruvion

sketch generation. This modification enhances parameter-
ization performance, while also ensuring consistent repro-
ducibility of results. All hyperparameters are set as in the
original paper [5].

ResNet34: To form a non-autoregressive baseline we
trained a ResNet34 followed by global pooling. The out-
put of the convolutional backbone is fed into a Multi-Layer
Perceptron (MLP) with 2 linear layers and a ReLU activa-
tion. The final token predictions are produced by a softmax
on the output logits of the MLP.

PpaCAD: We implemented the concurrent method
PpaCAD [6] as no public code is available. Image encoding
uses a 2-layer patch MLP followed by a transformer.
Separate losses are computed for each primitive type,
parameter, and construction flag. Further details are in [6].

Primitive Matching Network (PMN): For comparison
with PMN, we re-train on the Sketchgraphs dataset using
the publicly available code2. We form strokes by sampling
points on parametric primitives that are provided as input
to PMN. The input for PMN comprises multiple sets of co-
ordinates, with each set uniquely representing a single dis-
tinct primitive. Note that this scenario presents a less com-
plex challenge than that encountered in PICASSO, where
parameterization is derived directly from raster images. In
such case, primitives may overlap or be positioned in close
proximity, significantly increasing the complexity of the pa-
rameterization task. Strokes are processed by PMN to ob-
tain drawing primitives that consist of the abstracted out-
put stroke and the stroke type (line, circle, half-circle and
point). Finally, the output strokes are parameterized via
least-square fitting based on their predicted types.

DiffVG: Comparison to DiffVG [3] is performed on 1) pre-
training and 2) test-time optimization settings as discussed
in Section 5.3 of the main paper. Predicted sequences are
transformed into Bezier paths to enable an image-level loss.
For the pre-training setting, SPN is trained with respect to
the image loss. For test-time optimization, the paths are
iteratively updated through differentiable rendering. As al-
ready noted, DiffVG can only update path parameters, but it
is unable to change discrete decisions like path types. Lines
are converted to paths with two endpoints and no control
points. Points are also composed of 2 endpoints formed by
shifting the point coordinate by 1 quantization unit. Arcs
and circles are formed by Bezier paths, computed via the
Python package svgpathtools3. After optimization, paths
are converted back to the considered primitives (lines, arcs,
circles, and points) and evaluated directly w.r.t ground truth
sequences.

2https : / / github . com / ExplainableML / sketch -
primitives

3https://github.com/mathandy/svgpathtools

https://github.com/PrincetonLIPS/vitruvion
https://github.com/mathandy/svgpathtools
https://github.com/ExplainableML/sketch-primitives
https://github.com/ExplainableML/sketch-primitives
https://github.com/mathandy/svgpathtools


Method Acc ParamMSE ImgMSE CD

PICASSO (w/o pt.) 0.595 451 0.156 2.789
PICASSO (w/o pt. + semi-supervised) 0.608 432 0.145 1.833

Table 3. Semi-supervised learning results for PICASSO.

4. Semi-Supervised CAD Sketch Parameteri-
zation via Rendering Supervision

Rendering supervision enabled by the proposed SRN can
also be applied to other learning schemes. We investigate
a semi-supervised learning scenario where SRN is trained
through rendering supervision on unlabelled sketch images
and parametric supervision on a smaller set of parameter-
ized sketches (16k samples). Table 3 shows quantitative
results of the semi-supervised PICASSO compared to its
parametrically supervised counterpart on 16k samples. By
leveraging unlabelled sketches through rendering supervi-
sion, the semi-supervised model can achieve better per-
formance. The difference is more noticeable in terms of
image-based metrics, as rendering supervision can result in
a model that discovers plausible geometric reconstructions,
that might depart from the ground truth CAD sketch param-
eterization.

5. Sensitivity to Rendering Quality
For PICASSO, rendering self-supervision is facilitated

by neural differentiable rendering via SRN. We conduct an
ablation study to explore how variations in SRN’s rendering
performance influence the effectiveness of self-supervised
pretraining. To that end, we vary SRN rendering quality by
training SRN for different number of epochs. Specifically,
PICASSO is pretrained via rendering self-supervision us-
ing different SRN renderers trained for 5, 10, 30 and 40
epochs. The results are presented in Figure 4. We find that
SRN rendering performance (measured in terms of cham-
fer distance) stabilizes after a few training epochs (orange
line). However, the zero-shot performance of SPN is no-
tably stronger when using a fully trained SRN (blue line).
As the neural rendering improves, fewer artifacts are in-
troduced and SRN can more accurately replicates the input
sketch parameters.

6. Extension to Other Primitives
The main experiments of PICASSO are conducted for

parameterizing lines, circles, arcs, and points. Free-form
curves such as B-splines, hyperbolas, and NURBS are ex-
cluded similarly to recent works as they are underrepre-
sented in existing datasets (e.g. b-splines are 2.57% of
SketchGraphs primitives [31]). As a preliminary exper-
iment for future work, we trained and tested SPN and
SRN on a synthetic dataset including randomly generated
b-splines. Training is performed for 20 epochs and a dif-
ferent random sketch is sampled at each iteration. Table 4

SPN Zero-shot Performance SRN Rendering Performance
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Figure 4. (orange) Rendering performance (in terms of chamfer
distance) of SRN trained for different number of epochs. (blue)
Zero-shot performance of PICASSO-SPN when pretrained by the
aforementioned SRN renderers.

reports a comparison to DiffVG in terms of test time opti-
mization on 100 synthetically generated images. SRN self-
supervision improves b-spline predictions of SPN and sig-
nificantly surpasses DiffVG in terms of Chamfer Distance
(CD). Figure 5 shows an example where SPN prediction
on a synthetic sketch with B-spline is being improved with
SRN supervision.

Method CD

SPN 1.07
SPN+DiffVG 3.60
SPN+SRN 0.48

Table 4. Test time optimization of sketches that include B-splines.
Optimization via SRN performs better in terms of Chamfer Dis-
tance (CD).

SPN prediction on
Synthetic Sketch

SPN + SRN
Rendering Self-Supervision

Ground Truth

Figure 5. PICASSO on synthetic CAD sketch including B-spline.



7. Additional Qualitative Results
This section expands on the qualitative evaluation reported in the main paper.

7.1. Few-shot CAD Sketch Parameterization

This subsection expands the qualitative evaluation shown in subsection 5.2 (Few-shot Evaluation) of the main paper.
Visual results for finetuning with 2k, 16k and 32k samples are shown in Fig. 6. We observe that the 32k-shot setting results
in robust CAD parameterization from challenging precise and hand-drawn sketch images, even though the network is trained
only with a fraction of the original dataset (≈ 2% of the SketchGraph dataset [4]).

Figure 6. Few-shot setting. Qualitative results of PICASSO learned CAD sketch parameterization from precise and hand-drawn sketches.
Best viewed in colors.

Fig. 7 depicts the qualitative comparison of our model with that of Vitruvion [5] for the parameterization of precise and
hand-drawn sketches. It can be observed that the proposed method produces plausible parameterizations closer to the ground
truth.

Precise
Image

PICASSO
(16k samples)

Vitruvion
(16k samples)

Ground Truth Precise
Image

PICASSO
(16k samples)

Vitruvion
(16k samples)

Ground Truth

Figure 7. Visual examples of CAD sketch parameterization from hand-drawn and precise sketches by Vitruvion [5] and PICASSO on a
16k-shot setting.



7.2. Zero-shot CAD Sketch Parameterization

This subsection expands the qualitative evaluation shown in subsection 5.2 (Zero-shot Evaluation) of the main paper. In
Fig. 8, we present visual examples of CAD sketch parameterization from hand-drawn sketches, learned via an image-level
loss only. Under a complete lack of parametric supervision, PICASSO is able to roughly parameterize hand-drawn sketches.
Note that compared to few-shot setting, SPN is further constrained to output a fixed number of primitives per type for the zero-
shot evaluation. While PICASSO achieves plausible zero-shot parameterizations, we find that rendering self-supervision can
be hindered by the discrepancy between hand-drawn sketches and the precise ones rendered by SRN. The development of
hand-drawn invariant losses that can enhance zero-shot performance is identified as interesting future work.

Fig. 9 illustrates a qualitative comparison with PMN [2] for the zero-shot setting. PICASSO predicts more consistent
sketches with primitives that are not geometrically far from the input image. It is important to highlight that our zero-
shot model works on a more challenging setup of direct parameterization from images without having access to individual
groupings of strokes contrary to PMN [2]. Also, note that we do not conduct comparison to PMN on precise images. Since
PMN is aware of the grouping of distinct strokes, parameterization of precise inputs becomes a trivial task, reduced to merely
identifying the types of primitive strokes.

Hand-drawn
Image

PICASSO
(zero-shot)

Ground Truth Hand-drawn
Image

PICASSO
(zero-shot)

Ground Truth Hand-drawn
Image

PICASSO
(zero-shot)

Ground Truth

Figure 8. Qualitative results for CAD sketch parameterization of hand-drawn sketches, learned solely through rendering self-supervision
with SRN-PICASSO. Best visualised in colors.

Hand-drawn
Image

PICASSO
(zero-shot)

PMN Ground Truth Hand-drawn
Image

PICASSO
(zero-shot)

PMN Ground Truth

Figure 9. Zero-shot CAD sketch parameterization from hand-drawn sketches by PMN [2] and PICASSO. Note that PMN has prior
information on grouping individual strokes with their coordinate points, whereas PICASSO infers directly from the image space without
any grouping of primitives.



7.3. Test-time Optimization with SRN

As shown in subsection 5.3 (SRN vs DiffVG) of the main paper, rendering self-supervision can be used to enhance CAD
sketch parameterization produced by a parameterically supervised SPN at test-time. In Fig. 10, we show qualitative results
for test-time optimization of precise sketches. We observe that SRN can improve geometric reconstruction of CAD sketches
at inference time.

Initial Explicit
Rendering

Iter 1 Iter 5 Iter 30
Final Explicit
Rendering

Ground
Truth

Figure 10. Test-time optimization with SRN-PICASSO. SRN enables the computation of an image-level loss between predicted rendering
and the input precise sketch image. CAD parameterization improves over multiple backpropagation steps on a specific test sample.



8. Permutation Invariance of SRN w.r.t. Primitive Order
Since SRN processes input primitive tokens as a set, it should demonstrate permutation invariance with respect to their

order. Although this invariance is not explicitly designed into the architecture, it naturally emerges from the synthetic training
process, where primitives can appear in any sequence position. Figure 11 qualitatively illustrates the model’s robustness to
input order, with renderings of CAD sketches showing only subtle differences despite permuted primitive sequences.

Target Perm. 1 Perm. 2 Perm. 3 Perm. 4 Perm. 5

Figure 11. SRN renderings of the parametric CAD sketches where the primitives are randomly permuted.

9. Failure Case Analysis
We conduct a qualitative analysis of common failure cases identified for PICASSO finetuned with 16k samples. Figure 12

highlights several of these cases, where the model produces suboptimal parameterizations. Notable issues include difficulty
handling closely positioned primitives, inaccurate coordinate predictions, missing primitives, failure to capture fine details,
overly large arc predictions or combinations of the aforementioned cases.

Underperform on closely
positioned primitives

Precise
 Sketch

PICASSO
(16k few-shot)

Prediction of wrong
coordinate

Precise
 Sketch

PICASSO
(16k few-shot)

Miss primitive entirely

Precise
 Sketch

PICASSO
(16k few-shot)

Fail to capture finer details

Precise
 Sketch

PICASSO
(16k few-shot)

Predict large arcs Various Combinations

Precise
 Sketch

PICASSO
(16k few-shot)

Precise
 Sketch

PICASSO
(16k few-shot)

Figure 12. Common failure cases of PICASSO finetuned with parametric supervision on 16k samples.



10. PICASSO for Feature-based 3D CAD Modeling
2D CAD sketches are an essential component of feature-based CAD modeling. In Figure 13, we demonstrate how

PICASSO enables the design of 3D CAD models by parameterizing hand-drawn sketches. These parameterized sketches
are then uploaded to Onshape [1], where simple extrusions and revolutions are applied. This results in 3D solids that are
combined to form the 3D models depicted in the figure.

Tabletop

Legs Table CAD Model

PICASSO Extrusion

PICASSO

PICASSO

Extrusion

Extrusion

Seat

Legs

Backrest

PICASSO Revolution

Armrests

Chair CAD Model

Parameterized Sketch CAD Sketch

Parameterized Sketch

Parameterized Sketch

Parameterized Sketch

CAD Sketch

CAD Sketch

CAD Sketch

Extrusion

Extrusion

PICASSO

PICASSO

Parameterized Sketch CAD Sketch

Parameterized Sketch CAD Sketch

Figure 13. 3D CAD modeling from hand-drawn sketches with PICASSO.
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