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This appendix provides supplementary details for the
WACV 2025 paper titled ”Graph-Jigsaw Conditioned Dif-
fusion Model for Skeleton-based Video Anomaly Detec-
tion”.

• Sec. 1 provides a comprehensive reviews of related
works.

• Sec. 2 presents the pseudocode for our proposed Gi-
CiSAD method.

• Sec. 3 provides the background of diffusion models.

• Sec. 4 presents the results for different statistical ag-
gregations of anomaly scores in the inference phase.

• Sec. 5 provides information of the baselines.

• Sec. 6 provides information of different conditioning
strategies.

• Sec. 7 provide a visualization of the Intra-community
shuffling approach.

• Sec. 8 illustrates an example of the Inter-community
shuffling approach on the real-world constructed
graph.

1. Related Work
1.1. Skeleton-based Video Anomaly Detection

Skeleton-based video anomaly detection (SVAD) has
gained significant attention in recent years due to its poten-
tial applications in various domains such as video surveil-
lance, healthcare, and human-computer interaction. Many
studies have leveraged the powerful representation capa-
bilities of deep learning to automatically learn features
from skeleton-based video data, hence, to improve the
anomaly detection performance. Existing deep learning
studies can be categorized into three main approaches
[20, 26]: reconstruction-based, prediction-based and hybrid

approaches. In the reconstruction-based approach [7, 22],
an autoencoder or its variant model is trained on only nor-
mal human activities. During training, the model learns
to reconstruct the samples representing normal activities,
hence it is expected to yield low reconstruction error for
normal data, while achieving high reconstruction error for
abnormal data in the test phase. Regarding the prediction-
based approach [4, 16, 29], a model is trained to learn
the normal human behaviors by predicting the skeletons at
the next time steps using information at past time steps.
During the test phase, the test samples with high predic-
tion errors are flagged as anomalies. Lastly, the com-
bination of reconstruction-based and prediction-based ap-
proaches, which is called as the hybrid approach, has been
also widely explored [21, 28, 31]. These methods utilize a
multi-objective loss function that consists of reconstruction
and prediction errors to learn the characteristics of normal
skeletons, aimed at identifying skeletons with large errors
as anomalies in the test phase.

However, these three approaches encounter several is-
sues that require more advanced methods to tackle. For ex-
ample, reconstruction-based methods necessitate the avail-
ability of normal data during the training phase, leading to
an expectation of higher reconstruction errors for abnormal
samples. However, this assumption does not always hold in
practice; these methods can also generalize well to anoma-
lies, resulting in false negatives [7]. In prediction-based ap-
proaches, determining the optimal prediction horizon for fu-
ture (or past) events poses a challenge. Moreover, methods
relying on future prediction can be sensitive to noise in past
data [25]. Even minor alterations in past data can lead to
significant variations in predictions, not all of which nec-
essarily indicate anomalies. The combination-based meth-
ods include the limitations of the individual learning ap-
proaches. It is also challenging to determine the optimum
value of combination coefficients (weights) to balance the
importance of individual components in a multi-objective
loss function. Importantly, in skeleton-based video data,

1



subtle differences between normal and abnormal actions
can oftentimes be localized to specific regions of the body
rather than affecting the entire body. However, all existing
reconstruction-based, prediction-based and hybrid methods
are based on modeling the human body as a whole and ig-
nore the importance of such local variations when detect-
ing anomalies. Note that skeleton-based video data also
includes the challenge of inifinite variations of performing
normal and abnormal actions. While few studies has ad-
dressed this diversity challenge [5], by considering the body
as whole, they overlook the fact that abnormalities may be
localized to only specific regions of the body, potentially
leading to misdetection in cases where anomalies occur in
isolated regions while the rest of the body remains normal.

1.2. Self-supervised Learning

Recently, self-supervised learning (SSL) has been
widely employed in the context of video anomaly detec-
tion [11,12,26]. Essentially, SSL leverages large amounts of
unlabeled data to learn meaningful representations without
requiring explicit annotations for anomaly detection. Not
limited to the predefined reconstruction or prediction tasks,
SSL methods define various pretext tasks that can adapt to
the specific characteristics and complexities of the data, po-
tentially leading to more robust and discriminative repre-
sentations. Notable approaches include contrastive learn-
ing, which learns to maximize agreement between differ-
ently augmented views of the same data, as demonstrated
by recent works such as SimCLR [2] and MoCo [8]. Other
methods, such as generative adversarial networks (GANs)
[1, 12] and autoencoders [13], have also been explored for
self-supervised representation learning from videos. While
many studies have demonstrated the capability of SSL, they
failed to address the challenge of capturing region-specific
features in the field of SVAD. Very few works [26] have
effectively address this challenge by proposing a challeng-
ing pretext task, which encourages the model to focus on
region-level features in the image domain. However, it re-
mains unanswered how to adapt this approach to the field
of SVAD, particularly considering the presence of skeleton
data instead of traditional images in this context. This is due
to the fact that unlike images, skeleton data exhibits spa-
tial structure, and the temporal dynamics, which both play
a crucial role in defining actions and anomalies. Convolu-
tional layers commonly used in image-based SSL may not
directly apply to skeleton data. Instead, architectures based
on a combination of recurrent neural networks (RNNs) [18]
and graph neural networks (GNNs) [30] can be employed
to model the temporal and spatial aspects of skeleton se-
quences.

1.3. Graph-based Approaches

As denoted in the main paper, skeleton data is inherently
a time-series data that exhibits sptatio-temporal dependen-
cies. Hence, it can be naturally represented as graphs [19],
where joints correspond to nodes and the connections be-
tween joints form edges. Many studies have exploited the
potential of graphs for SVAD tasks. For example, [15] in-
troduces a Spatial-temporal Graph Convolutional Autoen-
coder with Embedded Long Short-Term Memory Network
(STGCAE-LSTM) for SVAD. This architecture comprises
a single-encoder-dual-decoder setup capable of simultane-
ously reconstructing the input and predicting future frames.
By leveraging graph convolutional operations, the model
captures spatial dependencies among joints. However, its
fixed adjacency matrix limits its ability to adapt to evolv-
ing relationships between joints over time, potentially hin-
dering its performance in capturing dynamic activities. [17]
proposes Normal Graph, a spatial-temporal graph convolu-
tional prediction-based network for SVAD. While pioneer-
ing in applying graph convolutional networks to SVAD and
effectively capturing spatial dependencies, Normal Graph
suffers from the same limitation as STGCAE-LSTM in its
inability to dynamically learn changing relationships be-
tween joints over time, as it fixes the adjacency matrix. Ad-
dressing the constraints imposed by fixed adjacency matri-
ces is critical for advancing the state-of-the-art in SVAD.
Recent research has explored the capability of dynamically
learning graphs overtime in both pure graph and time se-
ries domains [3, 10, 27]. In other words, these models dy-
namically learn the relationships between nodes over time,
offering enhanced capabilities in capturing complex spatio-
temporal dependencies and detecting anomalies in dynamic
graph or time-series domains. However, to date, there re-
mains a scarcity of works capable of effectively capturing
the evolving relationships of joints in real-time skeleton-
based video streams.

In response to the limitations observed in existing
methodologies within the field, we present GiCiSAD, a
comprehensive framework that introduces three novel mod-
ules to tackle these challenges effectively. The Graph
Attention-based Forecasting module leverages a graph
learning strategy to effectively capture the spatio-temporal
dependencies. To address the issue of region-specific dis-
crepancies, we propose a novel graph-level SSL with a dif-
ficult pretext task, called Graph-level Jigsaw Puzzle Maker,
which involves various subgraph augmentations applied to
the learnable graph, hence providing supervisory signals to
help GiCiSAD capture a slight region-level difference be-
tween normal and abnormal behaviors. Lastly, to contend
with the infinite variations inherent in anomaly detection
tasks, GiCiSAD integrates a cutting-edge diffusion-based
model named Graph-level Conditional Diffusion Model.
Leveraging the learned graph from previous frames as con-



ditional information, this model generates a diverse array of
future samples, thereby enhancing the robustness and adapt-
ability of GiCiSAD.

2. GiCiSAD Pseudocode
The overall procedure of the training and inference

phases of GiCiSAD is described in Algorithm 1 and Al-
gorithm 2, respectively. Note that during the inference
phase,M sets of future frames are generated. Subsequently,
these generated frames are compared with the actual ground
truth, resulting in M anomaly scores. Finally, these scores
are consolidated into a single aggregated value. More de-
tail regarding the aggregation mechanism is presented in
Sec. 4. In scenarios with more than one actor in the scene,
to summarize the anomaly score of all actors, we follow the
methodology outlined in [5]. This approach consolidates
the contributions of all actors by considering both the aver-
age error across all actors and the span of the error range.

Algorithm 1 GiCiSAD Training

1: Input: X , diffusion hyperparameters {β0, βT , T}, δ,
λ1, λ2, η.

2: Randomly initialize trainable parameters θ and ψ.
3: for not converged do
4: [x+,x−] = Batch(X) ▷ Batching
5: Compute x−

avg

6: A = Graphθ(x−, δ) ▷ Adjacency Matrix
Calculation

7: [A′, p] = Puzzle(A, η) ▷ Puzzle Making
8: [H, x̂−

avg] = Attentionθ(A′) ▷ Attention Mechanism
9: H = FCθ(H)

10: p̂ = SubgraphHeadψ(H)
11: [t,x+

corrupted, ϵ] = Forward(x+, T, β0, βT ) ▷ Forward
Diffusion

12: ϵ̂ = Reverseψ(x+
corrupted,H, fψ(t)) ▷ Reverse

Diffusion
13: L = λ1

(
Lgraph(x̂

−
avg,x

−
avg) + λ2Lpuzzle(p̂, p)

)
+

Ldiffusion(ϵ̂, ϵ)

14: Backpropage L to update θ and ψ.
15: end for

3. Background on Diffusion Models
Diffusion models [9, 23], a class of generative models,

define a two-process paradigm that includes: the forward
process that slowly adds Gaussian noise to the data and the
reverse process that constructs the desired data from the
noise. Mathematically, the forward process incrementally
adds Gaussian noise to the initial stage, called x0 ∼ q(x0)
over T diffusion steps according to a variance scheduler

Algorithm 2 GiCiSAD Inference

Input: x1:L, l, δ, diffusion hyperparameters
{β0, βT , T}, η, M .
Agg← ∅
x− = x1:l

x+ = xl+1:L

Actors = {All Actors participating in x1:L}
for a in Actors do ▷ Iteration Over Actors

Scores← ∅
for i in range(M ) do ▷ Generate M Samples

u+
i = N (0, I)

ᾱ = 1

for t = T, . . . , 1 do
A = Graphθ(x−, δ) ▷ Adjacency Matrix

Calculation
[A′, p] = Puzzle(A, η) ▷ Puzzle Making
H = Attentionθ(A′) ▷ Attention

Mechanism
H = FCθ(H)
ϵ̂ = Reverseψ(u+

i ,H, fψ(t)) ▷ Reverse
Diffusion

ξ = N (0, I)

ᾱ = ᾱ× (1− βt)
u+
i = 1√

1−βt

(
u+
i −

βt√
1−ᾱ ϵ̂

)
+ ξ
√
βt ▷

Recover The Sequence
end for
Scores← Scores ∪ {Ldiffusion(x

+,u+
i )} ▷ Save

Anomaly Score
end for
Agg← Agg ∪ {AGGREGATE(Scores)} ▷

Aggregate M Anomaly Scores
end for
Anomaly Score: mean(Agg) + log 1+max(Agg)

1+min(Agg) . ▷

Anomaly Score Across All Actors

β1, . . . , βT . The approximate posterior can be represented
as:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), (1)

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (2)

By setting αt := 1−βt and ᾱt :=
∏t
s=1 αs, the forward

process allows to immediately transform x0 to a noisy xt
according to βt in a closed form as:

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I). (3)



The reverse process aims to produce the samples that
match the data distribution after a finite number of transi-
tion steps. Starting with p(xT ) := N (xt; 0, I), the joint
distribution is then given by:

pψ(x0:T ) := p(xT )

T∏
t=1

pψ(xt−1|xt), (4)

pψ(xt−1|xt) := N (xt−1;µψ(xt, t), σψ(xt, t)). (5)

Note that µψ(xt, t) and σψ(xt, t) are parameterized as:

µψ(xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵψ(xt, t)
)
, (6)

σψ(xt, t) =

√
β̄t, (7)

where β̄t = 1−ᾱt−1

1−ᾱt
βt, and β̄1 = β1. ϵψ is a network

approximator (the U-Net-based architecture in our case),
which take xt and the diffusion step t as the inputs, and
aims to predict the noise from xt.

4. Different Strategies for Statistical Aggrega-
tions

In this analysis, we assess the performance of anomaly
detection by altering the method of aggregation. Given the
infinite variations in executing both normal and abnormal
actions, we generate M sets of future frames. For each set,
we calculate an anomaly score. As discussed in the main pa-
per, for the purpose of statistically aggregating these scores,
we explore four strategies: taking the mean, the median,
the maximum distance, and the minimum distance. In the
mean and median approaches, we derive either the mean or
the median of all M scores and allocate this value to the
respective frame to evaluate its anomaly level. Regarding
the maximum and minimum distance selector approach, the
highest and lowest anomaly score among all scores is as-
signed to the frame respectively. Comparison between these
four methods is shown in Tab. 1, with the minimum dis-
tance approach demonstrating superior performance across
the board. The suboptiomal performance of the maximum
distance strategy further supports the idea that generated fu-
ture samples that are conditioned on normal motions are
as diverse as those that are conditioned on anomalous mo-
tions. This is due to the fact that if normal conditioned
future sampled were not diverse, both the maximum and
minimum distance strategies would have resulted in identi-
cal outcomes. Fig. 1 further demonstrates the effectiveness
of our proposed GiCiSAD method in generating a diverse
range of samples conditioned on both normal and abnor-
mal frames. As can be seen, when the model is conditioned
on normal past frames, the generated future frames are di-
verse yet close to the ground truth, with low anomaly scores.

Aggregation Strategy HR-Avenue HR-STC

Mean 89.5 77.8
Median 89.5 77.9
Maximum Distance 88.2 77.3
Minimum Distance 89.6 78

Table 1. Comparison between different aggregation strategies for
50 generation of future frames, assessed through the AUROC met-
ric on the HR-Avenue and HR-STC datasets.
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Figure 1. Histograms of the anomaly scores for 50 future frames
generated by Diffusion on the HR-STC dataset, for both cases
of conditioning on normal and abnormal past frames.

Conversely, when conditioned on abnormal past frames, the
generated frames remain diverse but deviate significantly
from the ground truth.

5. Baselines

As mentioned in the main paper, we compare GiCiSAD
against SOTA methods. Details of each method are de-
scribed below.

1. GEPC [19] analyzes human poses through graphs. By
mapping these graphs into a latent space and cluster-
ing them, they represent each action based on its soft-
assignments to these clusters, akin to a ”bag of words”
model where actions are defined by their resemblance
to foundational action-words. They then employ a
Dirichlet process-based mixture model to classify ac-
tions as normal or anomalous.

2. PoseCVAE [14] predicts future pose trajectories based
on a sequence of past normal poses, aiming to learn
a conditional posterior distribution that characterizes
the normal data, using a conditional variational autoen-
coder. They also propose a self-supervised component



to enhance the encoder and decoder’s ability to cap-
ture the latent space representations of human pose tra-
jectories effectively. They imitate abnormal poses in
the embeded space and use a binary cross-entropy loss
along with the standard conditional variational autoen-
coder loss function.

3. STGCN-LSTM [15] merges spatial-temporal graph
convolutional autoencoder and Long Short-term Mem-
ory networks. They use reconstruction and future pre-
diction errors for detecting anomalies.

4. COSKAD [6] utilizes a graph convolutional network to
encode skeletal human motions, and learns to project
skeletal kinematic embeddings onto a latent hyper-
sphere of minimal volume for video anomaly detec-
tion. COSKAD innovates by proposing three types of
latent spaces: the traditional Euclidean, their proposed
spherical and hyperbolic spaces.

5. MoCoDAD [5] utilizes autoencoder conditioned diffu-
sion probabilistic models to generate a variety of future
human poses. Their autoencoder-based approach con-
ditions on individuals’ past movements and leverages
the enhanced mode coverage of diffusion processes to
produce diverse yet plausible future motions. By sta-
tistically aggregating these potential futures, the model
identifies anomalies when the forecasted set of mo-
tions diverges significantly from the observed future.

6. TrajREC [24] leverages multitask learning to encode
temporally occluded trajectories, jointly learn latent
representations of the occluded segments, and recon-
struct trajectories based on expected motions across
different temporal segments.

6. Weaker Forms of Conditioning Mechanism
This section elaborates on the Encoder-based and Au-

toEncoder-based conditioning mechanisms [5] that are used
for comparison with our proposed Graph-based approach,
mentioned in the ablation study of the main paper. The ob-
jective of conditioning mechanism is to generate an efficient
latent representation of past frames, H, to effectively guide
the Diffusion process. The architecture of these two
conditioning mechanisms is illustrated in Fig. 2. H will be
used as the conditioning signal to guide the Diffusion,
where the architecture of Diffusion remains unchanged.
The Encoder-based method introduces no additional loss to
the model. Conversely, the AutoEncoder-based approach
incorporates the reconstruction loss of the past frames into
the Diffusion loss, thereby modifying the overall loss
calculation as follows.

L = λLrec + Ldiffusion, (8)

Figure 2. Comparison of Encoder-based and Autoencoder-based
conditioning mechanisms.

where λ is 0.1. From an architectural perspective, the en-
coder features a channel sequence of (32, 16, 32), incorpo-
rating a bottleneck dimension of 32 and a latent projector
with a dimensionality of 16.

7. Visualization of Intra-Community Shuffling
Approach

The visualization of the Intra-Community shuffling ap-
proach is shown in Fig. 3. A detailed description of this ap-
proach has previously been provided in the ablation study
section, ”Types of Graph-based Jigsaw Puzzles,” of the
main paper.

8. Visualization of Inter-Community Shuffling
Approach on Real Constructed Graphs

While we have presented a simple and easy-to-
understand visualization of our Inter-community shuffling
approach in Fig. 2 of the main paper, we provide Fig. 4
for a more detailed view of the Inter-community shuffling
process on the real constructed graphs. Graphs include 34
nodes (joints), δ and η are set to 4. Note that the graphs (be-
fore and after shuffling) are directed, indicating that connec-
tions are not inherently symmetric. In this figure, Subgraph
2 (depicted in green) is shuffled with Subgraph 1 (depicted
in orange). Specifically, the densest nodes of Subgraph
2, namely, {32, 3, 31, 30, 7, 13}, are shuffled with nodes
{29, 4, 6, 11, 26, 2} from Subgraph 1, respectively. After
the shuffling process, while nodes of the smaller subgraph,
i.e., Subgraph 1, stay connected, the intra-connections of
the larger subgraph, i.e., Subgraph 2, undergoes significant
changes, nearly dividing it into two distinct parts. It should
be noted that the other two subgraphs, i.e., Subgraphs 0 and
3, retain their connections, while only their spatial position-
ing is changed for better visualization in the figure.



Figure 3. Visualization of the Intra-Community shuffling approach. Nodes with the same color formulate a subgraph. Note that although
each node is required to have δ connections, for improved visualization, this property is not strictly maintained in the figure.
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